AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Organs at Risk

Showing 81 to 90 of 294 articles

Clear Filters

Deep learning segmentation of organs-at-risk with integration into clinical workflow for pediatric brain radiotherapy.

Journal of applied clinical medical physics
PURPOSE: Radiation therapy (RT) of pediatric brain cancer is known to be associated with long-term neurocognitive deficits. Although target and organs-at-risk (OARs) are contoured as part of treatment planning, other structures linked to cognitive fu...

Deep learning for head and neck semi-supervised semantic segmentation.

Physics in medicine and biology
. Radiation therapy (RT) represents a prevalent therapeutic modality for head and neck (H&N) cancer. A crucial phase in RT planning involves the precise delineation of organs-at-risks (OARs), employing computed tomography (CT) scans. Nevertheless, th...

[Not Available].

Medical physics
BACKGROUND:: Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning-based auto-segmentation of OARs has shown promising results and is increasingly being used in r...

Custom-Trained Deep Learning-Based Auto-Segmentation for Male Pelvic Iterative CBCT on C-Arm Linear Accelerators.

Practical radiation oncology
PURPOSE: The purpose of this investigation was to evaluate the clinical applicability of a commercial artificial intelligence-driven deep learning auto-segmentation (DLAS) tool on enhanced iterative cone beam computed tomography (iCBCT) acquisitions ...

Deep learning and atlas-based models to streamline the segmentation workflow of total marrow and lymphoid irradiation.

La Radiologia medica
PURPOSE: To improve the workflow of total marrow and lymphoid irradiation (TMLI) by enhancing the delineation of organs at risk (OARs) and clinical target volume (CTV) using deep learning (DL) and atlas-based (AB) segmentation models.

Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation.

Physics in medicine and biology
. Prior to radiation therapy planning, accurate delineation of gross tumour volume (GTVs) and organs at risk (OARs) is crucial. In the current clinical practice, tumour delineation is performed manually by radiation oncologists, which is time-consumi...

Gross failure rates and failure modes for a commercial AI-based auto-segmentation algorithm in head and neck cancer patients.

Journal of applied clinical medical physics
PURPOSE: Artificial intelligence (AI) based commercial software can be used to automatically delineate organs at risk (OAR), with potential for efficiency savings in the radiotherapy treatment planning pathway, and reduction of inter- and intra-obser...

Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers.

Journal of cancer research and therapeutics
PURPOSE/OBJECTIVE S: Due to manual OAR contouring challenges, various automatic contouring solutions have been introduced. Historically, common clinical auto-segmentation algorithms used were atlas-based, which required maintaining a library of self-...

Deep learning-based automatic segmentation of cardiac substructures for lung cancers.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: Accurate and comprehensive segmentation of cardiac substructures is crucial for minimizing the risk of radiation-induced heart disease in lung cancer radiotherapy. We sought to develop and validate deep learning-based auto-segmentation model...