Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mai...
Journal of applied clinical medical physics
Nov 14, 2024
OBJECTIVE: We investigated the feasibility of deep learning-based ultra-low dose kV-fan-beam computed tomography (kV-FBCT) image enhancement algorithm for clinical application in abdominal and pelvic tumor radiotherapy.
OBJECTIVE: To assess the viability of using ultra-low radiation and contrast medium (CM) dosage in aortic computed tomography angiography (CTA) through the application of low tube voltage (60kVp) and a novel deep learning image reconstruction algorit...
Radial cine-MRI allows for sliding window reconstruction at nearly arbitrary frame rate, promising high-speed imaging for intra-fractional motion monitoring in magnetic resonance guided radiotherapy. However, motion within the reconstruction window m...
Journal of computer assisted tomography
Nov 5, 2024
OBJECTIVE: The purpose of this study was to compare radiation dose reduction capability for accurate liver tumor measurements of a computer-aided volumetry (CAD v ) software for filtered back projection (FBP), hybrid-type iterative reconstruction (IR...
OBJECTIVE: To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).
Photon-counting computed tomography (PCCT) reconstructs multiple energy-channel images to describe the same object, where there exists a strong correlation among different channel images. In addition, reconstruction of each channel image suffers phot...
Computer methods and programs in biomedicine
Oct 28, 2024
This study proposes a compact deep learning (DL) architecture and a highly parallelized computing hardware platform to reconstruct the blood flow index (BFi) in diffuse correlation spectroscopy (DCS). We leveraged a rigorous analytical model to gener...
A newly developed magnetic resonance imaging (MRI) approach is based on "Radiowave amplification by the stimulated emission of radiation" (RASER). RASER MRI potentially allows for higher resolution, is inherently background-free, and does not require...
Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.