AIMC Topic: Polymorphism, Single Nucleotide

Clear Filters Showing 171 to 180 of 397 articles

Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network.

Scientific reports
Recent large-scale genome-wide association studies have identified common genetic variations that may contribute to the risk of amyotrophic lateral sclerosis (ALS). However, pinpointing the risk variants in noncoding regions and underlying biological...

An enhanced machine learning tool for cis-eQTL mapping with regularization and confounder adjustments.

Genetic epidemiology
Many expression quantitative trait loci (eQTL) studies have been conducted to investigate the biological effects of variants in gene regulation. However, these eQTL studies may suffer from low or moderate statistical power and overly conservative fal...

Predicting breast cancer risk using interacting genetic and demographic factors and machine learning.

Scientific reports
Breast cancer (BC) is a multifactorial disease and the most common cancer in women worldwide. We describe a machine learning approach to identify a combination of interacting genetic variants (SNPs) and demographic risk factors for BC, especially fac...

Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders.

Scientific reports
Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive pi...

Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters.

Forensic science international. Genetics
We developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) together with a machine learning (ML) program PredYMaLe to assess the impact of STR mutability on haplogourp prediction, while respecting forensic community criteria (high D...

Comparison and development of machine learning tools for the prediction of chronic obstructive pulmonary disease in the Chinese population.

Journal of translational medicine
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major public health problem and cause of mortality worldwide. However, COPD in the early stage is usually not recognized and diagnosed. It is necessary to establish a risk model to predict...

Application of Artificial Neural Network for Prediction of Risk of Multiple Sclerosis Based on Single Nucleotide Polymorphism Genotypes.

Journal of molecular neuroscience : MN
The artificial neural network (ANN) is a sort of machine learning method which has been used in determination of risk of human disorders. In the current investigation, we have created an ANN and trained it based on the genetic data of 401 multiple sc...

Prediction of Side Effects Using Comprehensive Similarity Measures.

BioMed research international
Identifying the potential side effects of drugs is crucial in clinical trials in the pharmaceutical industry. The existing side effect prediction methods mainly focus on the chemical and biological properties of drugs. This study proposes a method th...

Machine learning on genome-wide association studies to predict the risk of radiation-associated contralateral breast cancer in the WECARE Study.

PloS one
The purpose of this study was to identify germline single nucleotide polymorphisms (SNPs) that optimally predict radiation-associated contralateral breast cancer (RCBC) and to provide new biological insights into the carcinogenic process. Fifty-two w...