AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Predictive Value of Tests

Showing 181 to 190 of 2091 articles

Clear Filters

Predictive efficacy of machine-learning algorithms on intrahepatic cholestasis of pregnancy based on clinical and laboratory indicators.

The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians
OBJECTIVES: Intrahepatic cholestasis of pregnancy (ICP), a condition exclusive to pregnancy, necessitates prompt identification and intervention to improve the perinatal outcomes. This study aims to develop suitable machine-learning models for predic...

Comparative Analysis of Nomogram and Machine Learning Models for Predicting Axillary Lymph Node Metastasis in Early-Stage Breast Cancer: A Study on Clinically and Ultrasound-Negative Axillary Cases Across Two Centers.

Ultrasound in medicine & biology
OBJECTIVE: Early and accurate prediction of axillary lymph node metastasis (ALNM) is crucial in determining appropriate treatment strategies for patients with early-stage breast cancer. The aim of this study was to evaluate the efficacy of radiomic f...

Predicting high-flow arteriovenous fistulas and cardiac outcomes in hemodialysis patients.

Journal of vascular surgery
BACKGROUND: Heart failure is common in patients receiving hemodialysis. A high-flow arteriovenous fistula (AVF) may represent a modifiable risk factor for heart failure and death. Currently, no tools exist to assess the risk of developing a high-flow...

Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning.

Circulation journal : official journal of the Japanese Circulation Society
BACKGROUND: Accurate prediction of short-term mortality in patients with acute pulmonary embolism (PE) is critical for optimizing treatment strategies and improving patient outcomes. The Pulmonary Embolism Severity Index (PESI) is the current referen...

Using machine learning models for predicting monthly iPTH levels in hemodialysis patients.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Intact parathyroid hormone (iPTH), also known as active parathyroid hormone, is an important indicator commonly for monitoring secondary hyperparathyroidism (SHPT) in patients undergoing hemodialysis. The aim of this study w...

Left Atrial Wall Thickness Measured by a Machine Learning Method Predicts AF Recurrence After Pulmonary Vein Isolation.

Journal of cardiovascular electrophysiology
BACKGROUND: Left atrial (LA) remodeling plays a significant role in the progression of atrial fibrillation (AF). Although LA wall thickness (LAWT) has emerged as an indicator of structural remodeling, its impact on AF outcomes remains unclear. We aim...

Developing predictive models for residual back pain after percutaneous vertebral augmentation treatment for osteoporotic thoracolumbar compression fractures based on machine learning technique.

Journal of orthopaedic surgery and research
BACKGROUND: Machine learning (ML) has been widely applied to predict the outcomes of numerous diseases. The current study aimed to develop a prognostic prediction model using machine learning algorithms and identify risk factors associated with resid...

Predicting vaginal delivery after labor induction using machine learning: Development of a multivariable prediction model.

Acta obstetricia et gynecologica Scandinavica
INTRODUCTION: Induction of labor, often used for pregnancy termination, has globally rising rates, especially in high-income countries where pregnant women present with more comorbidities. Consequently, concerns on a potential rise in cesarean sectio...

A Predictive Model Integrating AI Recognition Technology and Biomarkers for Lung Nodule Assessment.

The Thoracic and cardiovascular surgeon
BACKGROUND:  Lung cancer is the most prevalent and lethal cancer globally, necessitating accurate differentiation between benign and malignant pulmonary nodules to guide treatment decisions. This study aims to develop a predictive model that integrat...