AIMC Topic: Prospective Studies

Clear Filters Showing 411 to 420 of 2401 articles

Artificial T1-Weighted Postcontrast Brain MRI: A Deep Learning Method for Contrast Signal Extraction.

Investigative radiology
OBJECTIVES: Reducing gadolinium-based contrast agents to lower costs, the environmental impact of gadolinium-containing wastewater, and patient exposure is still an unresolved issue. Published methods have never been compared. The purpose of this stu...

Automated detection of tonic seizures using wearable movement sensor and artificial neural network.

Epilepsia
Although several validated wearable devices are available for detection of generalized tonic-clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neu...

Computer-aided prognosis of tuberculous meningitis combining imaging and non-imaging data.

Scientific reports
Tuberculous meningitis (TBM) is the most lethal form of tuberculosis. Clinical features, such as coma, can predict death, but they are insufficient for the accurate prognosis of other outcomes, especially when impacted by co-morbidities such as HIV i...

Clinical utility of a rapid two-dimensional balanced steady-state free precession sequence with deep learning reconstruction.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Cardiovascular magnetic resonance (CMR) cine imaging is still limited by long acquisition times. This study evaluated the clinical utility of an accelerated two-dimensional (2D) cine sequence with deep learning reconstruction (Sonic DL) t...

Deep learning-based automatic ASPECTS calculation can improve diagnosis efficiency in patients with acute ischemic stroke: a multicenter study.

European radiology
OBJECTIVES: The Alberta Stroke Program Early CT Score (ASPECTS), a systematic method for assessing ischemic changes in acute ischemic stroke using non-contrast computed tomography (NCCT), is often interpreted relying on expert experience and can vary...

Empowering Early Career Neurosurgeons in the Critical Appraisal of Artificial Intelligence and Machine Learning: The Design and Evaluation of a Pilot Course.

World neurosurgery
BACKGROUND: Artificial intelligence (AI) is expected to play a greater role in neurosurgery. There is a need for neurosurgeons capable of critically appraising AI literature to evaluate its implementation or communicate information to patients. Howev...

Development of Clinically Validated Artificial Intelligence Model for Detecting ST-segment Elevation Myocardial Infarction.

Annals of emergency medicine
STUDY OBJECTIVE: Although the importance of primary percutaneous coronary intervention has been emphasized for ST-segment elevation myocardial infarction (STEMI), the appropriateness of the cardiac catheterization laboratory activation remains subopt...

Deep Learning Model Using Stool Pictures for Predicting Endoscopic Mucosal Inflammation in Patients With Ulcerative Colitis.

The American journal of gastroenterology
INTRODUCTION: Stool characteristics may change depending on the endoscopic activity of ulcerative colitis (UC). We developed a deep learning model using stool photographs of patients with UC (DLSUC) to predict endoscopic mucosal inflammation.

Development and External Validation of a Machine Learning-based Fall Prediction Model for Nursing Home Residents: A Prospective Cohort Study.

Journal of the American Medical Directors Association
OBJECTIVES: To develop and externally validate a machine learning-based fall prediction model for ambulatory nursing home residents. The focus is on predicting fall occurrences within 6 months after baseline assessment through a binary classification...