AIMC Topic: Radiomics

Clear Filters Showing 151 to 160 of 618 articles

CT-based Machine Learning Radiomics Modeling: Survival Prediction and Mechanism Exploration in Ovarian Cancer Patients.

Academic radiology
RATIONALE AND OBJECTIVES: To create a radiomics model based on computed tomography (CT) to predict overall survival in ovarian cancer patients. To combine Rad-score with genomic data to explore the association between gene expression and Rad-score.

Development of a clinical prediction model for benign and malignant pulmonary nodules with a CTR ≥ 50% utilizing artificial intelligence-driven radiomics analysis.

BMC medical imaging
OBJECTIVE: In clinical practice, diagnosing the benignity and malignancy of solid-component-predominant pulmonary nodules is challenging, especially when 3D consolidation-to-tumor ratio (CTR) ≥ 50%, as malignant ones are more invasive. This study aim...

Automatic machine learning accurately predicts the efficacy of immunotherapy for patients with inoperable advanced non-small cell lung cancer using a computed tomography-based radiomics model.

Diagnostic and interventional radiology (Ankara, Turkey)
PURPOSE: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individual...

A radiomics and deep learning nomogram developed and validated for predicting no-collapse survival in patients with osteonecrosis after multiple drilling.

BMC medical informatics and decision making
PURPOSE: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus.

Scientific reports
This study sought to establish and validate an interpretable CT radiomics-based machine learning model capable of predicting post-acute pancreatitis diabetes mellitus (PPDM-A), providing clinicians with an effective predictive tool to aid patient man...

Generative Adversarial Networks With Radiomics Supervision for Lung Lesion Generation.

IEEE transactions on bio-medical engineering
Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional gen...

Deep Learning Radiomics Nomogram Based on MRI for Differentiating between Borderline Ovarian Tumors and Stage I Ovarian Cancer: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a deep learning radiomics nomogram (DLRN) based on T2-weighted MRI to distinguish between borderline ovarian tumors (BOTs) and stage I epithelial ovarian cancer (EOC) preoperatively.

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Academic radiology
RATIONALE AND OBJECTIVES: The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop ...

A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast Cancer Biopsy Outcome Prediction.

Academic radiology
RATIONALE AND OBJECTIVES: In the USA over 1 million breast biopsies are performed annually. Approximately 9.6% diagnostic exams were given Breast Imaging Reporting and Data System (BI-RADS) ≥4A, most of which are 4A/4B. Contrast-enhanced mammography ...

Noninvasive identification of HER2 status by integrating multiparametric MRI-based radiomics model with the vesical imaging-reporting and data system (VI-RADS) score in bladder urothelial carcinoma.

Abdominal radiology (New York)
PURPOSE: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Ve...