AIMC Topic: Radiomics

Clear Filters Showing 271 to 280 of 674 articles

Diagnostic accuracy of radiomics and artificial intelligence models in diagnosing lymph node metastasis in head and neck cancers: a systematic review and meta-analysis.

Neuroradiology
INTRODUCTION: Head and neck cancers are the seventh most common globally, with lymph node metastasis (LNM) being a critical prognostic factor, significantly reducing survival rates. Traditional imaging methods have limitations in accurately diagnosin...

Integrating radiomic and 3D autoencoder-based features for Non-Small Cell Lung Cancer survival analysis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: The aim of this study is to develop a radiomic and deep learning-based signature for survival analysis of patients with Non-Small Cell Lung Cancer.

Computed tomography enterography radiomics and machine learning for identification of Crohn's disease.

BMC medical imaging
BACKGROUND: Crohn's disease is a severe chronic and relapsing inflammatory bowel disease. Although contrast-enhanced computed tomography enterography is commonly used to evaluate crohn's disease, its imaging findings are often nonspecific and can ove...

Combination of Deep Learning Grad-CAM and Radiomics for Automatic Localization and Diagnosis of Architectural Distortion on DBT.

Academic radiology
RATIONALE AND OBJECTIVES: Detection and diagnosis of architectural distortion (AD) on digital breast tomosynthesis (DBT) is challenging. This study applied artificial intelligence (AI) using deep learning (DL) algorithms to detect AD, followed by rad...

A Stacked Multimodality Model Based on Functional MRI Features and Deep Learning Radiomics for Predicting the Early Response to Radiotherapy in Nasopharyngeal Carcinoma.

Academic radiology
BACKGROUND: This study aimed to construct and assess a comprehensive model that integrates MRI-derived deep learning radiomics, functional imaging (fMRI), and clinical indicators to predict early efficacy of radiotherapy in nasopharyngeal carcinoma (...

Using interpretable deep learning radiomics model to diagnose and predict progression of early AD disease spectrum: a preliminary [F]FDG PET study.

European radiology
OBJECTIVES: In this study, we propose an interpretable deep learning radiomics (IDLR) model based on [F]FDG PET images to diagnose the clinical spectrum of Alzheimer's disease (AD) and predict the progression from mild cognitive impairment (MCI) to A...

Prediction of femoral head collapse in osteonecrosis using deep learning segmentation and radiomics texture analysis of MRI.

BMC medical informatics and decision making
BACKGROUND: Femoral head collapse is a critical pathological change and is regarded as turning point in disease progression in osteonecrosis of the femoral head (ONFH). In this study, we aim to build an automatic femoral head collapse prediction pipe...

Lung nodule classification using radiomics model trained on degraded SDCT images.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challeng...

Reproducibility and interpretability in radiomics: a critical assessment.

Diagnostic and interventional radiology (Ankara, Turkey)
Radiomics aims to improve clinical decision making through the use of radiological imaging. However, the field is challenged by reproducibility issues due to variability in imaging and subsequent statistical analysis, which particularly affects the i...