AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy, Intensity-Modulated

Showing 31 to 40 of 281 articles

Clear Filters

Evaluation and comparison of synthetic computed tomography algorithms with 3T MRI for prostate radiotherapy: AI-based versus bulk density method.

Journal of applied clinical medical physics
PURPOSE: Synthetic computed tomography (sCT)-algorithms, which generate computed tomography images from magnetic resonance imaging data, are becoming part of the clinical radiotherapy workflow. The aim of this retrospective study was to evaluate and ...

Rapid in vivo EPID image prediction using a combination of analytically calculated attenuation and AI predicted scatter.

Medical physics
BACKGROUND: The electronic portal imaging device (EPID) can be used in vivo, to detect on-treatment errors by evaluating radiation exiting a patient. To detect deviations from the planning intent, image predictions need to be modeled based on the pat...

Dose prediction of CyberKnife Monte Carlo plan for lung cancer patients based on deep learning: robust learning of variable beam configurations.

Radiation oncology (London, England)
BACKGROUND: Accurate calculation of lung cancer dose using the Monte Carlo (MC) algorithm in CyberKnife (CK) is essential for precise planning. We aim to employ deep learning to directly predict the 3D dose distribution calculated by the MC algorithm...

Brain MR-only workflow in clinical practice: A comparison among generators for quality assurance and patient positioning.

Journal of applied clinical medical physics
BACKGROUND AND PURPOSE: Routine quality control procedures are still required for sCT based on artificial intelligence (AI) to verify the performance of the generators. The aim of this study was to evaluate three generators based on AI or bulk densit...

Attention 3D UNET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Intracavitary applicators.

Journal of applied clinical medical physics
BACKGROUND: Formulating a clinically acceptable plan within the time-constrained clinical setting of brachytherapy poses challenges to clinicians. Deep learning based dose prediction methods have shown favorable solutions for enhancing efficiency, bu...

Deep learning prediction of scenario doses for direct plan robustness evaluations in IMPT for head-and-neck.

Physics in medicine and biology
. Intensity modulated proton therapy (IMPT) is susceptible to uncertainties in patient setup and proton range. Robust optimization is employed in IMPT treatment planning to ensure sufficient coverage of the clinical target volume (CTV) in predefined ...

Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).

Physics in medicine and biology
To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-ris...