AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Reproducibility of Results

Showing 91 to 100 of 5436 articles

Clear Filters

Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer.

Nature communications
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-eosin-stained whole slide images (WSIs). We train an SSL Barlow Twins encoder on 435 colon adenocarcinoma WSIs from The C...

Prediction of postpartum depression in women: development and validation of multiple machine learning models.

Journal of translational medicine
BACKGROUND: Postpartum depression (PPD) is a significant public health issue. This study aimed to develop and validate machine learning (ML) models using biopsychosocial predictors to predict the risk of PPD for perinatal women and to provide several...

Online Unsupervised Adaptation of Latent Representation for Myoelectric Control During User-Decoder Co-Adaptation.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis control. However, the statistical characteristics of EMG signals change over time (e.g., beca...

Deep Learning-Based ASPECTS Algorithm Enhances Reader Performance and Reduces Interpretation Time.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: ASPECTS is a long-standing and well-documented selection criterion for acute ischemic stroke treatment; however, the interpretation of ASPECTS is a challenging and time-consuming task for physicians with notable interobserver ...

Reliability and validity of a novel single-lead portable electrocardiogram device for pregnant women: a comparative study.

BMC medical informatics and decision making
BACKGROUND: WenXinWuYang, a novel portable Artificial Intelligence Electrocardiogram (AI-ECG) device, can detect many kinds of abnormal heart disease and perform a single-lead ECG, but its reliability and validity among pregnant women is unclear. The...

Performance of a point-of-care ultrasound platform for artificial intelligence-enabled assessment of pulmonary B-lines.

Cardiovascular ultrasound
BACKGROUND: The incorporation of artificial intelligence (AI) into point-of-care ultrasound (POCUS) platforms has rapidly increased. The number of B-lines present on lung ultrasound (LUS) serve as a useful tool for the assessment of pulmonary congest...

Interpretation of cardiopulmonary exercise test by GPT - promising tool as a first step to identify normal results.

Expert review of respiratory medicine
BACKGROUND: Cardiopulmonary exercise testing (CPET) is used in the evaluation of unexplained dyspnea. However, its interpretation requires expertise that is often not available. We aim to evaluate the utility of ChatGPT (GPT) in interpreting CPET res...

An quality evaluation method based on three-dimensional integration and machine learning: Advanced data processing.

Journal of chromatography. A
This study presents an innovative approach for the quality evaluation of traditional Chinese medicine (TCM) by integrating three-dimensional (3D) data processing with machine learning, aimed at enhancing the efficiency and accuracy of HPLC-DAD data a...

Evaluating large language models as a supplementary patient information resource on antimalarial use in systemic lupus erythematosus.

Lupus
ObjectiveTo assess the accuracy, completeness, and reproducibility of Large Language Models (LLMs) (Copilot, GPT-3.5, and GPT-4) on antimalarial use in systemic lupus erythematosus (SLE).Materials and MethodsWe utilized 13 questions derived from pati...

Deep Learning for Ultrasonographic Assessment of Temporomandibular Joint Morphology.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Temporomandibular joint (TMJ) disorders are a significant cause of orofacial pain. Artificial intelligence (AI) has been successfully applied to other imaging modalities but remains underexplored in ultrasonographic evaluations of TMJ.