AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Republic of Korea

Showing 51 to 60 of 340 articles

Clear Filters

Prediction model and technical and tactical decision analysis of women's badminton singles based on machine learning.

PloS one
In the Paris Olympic cycle, South Korean women's athlete An Se-young rose to the top of the 2023 BWF Olympic points with a win rate of 89.5%. With An Se-young as the subject, this paper aims to carry out technical and tactical analysis of women's bad...

Development of Machine Learning Models to Categorize Life Satisfaction in Older Adults in Korea.

Journal of preventive medicine and public health = Yebang Uihakhoe chi
OBJECTIVES: This study aimed to identify factors associated with life satisfaction by developing machine learning (ML) models to predict life satisfaction in older adults living alone.

Predictive model for abdominal liposuction volume in patients with obesity using machine learning in a longitudinal multi-center study in Korea.

Scientific reports
This study aimed to develop and validate a machine learning (ML)-based model for predicting liposuction volumes in patients with obesity. This study used longitudinal cohort data from 2018 to 2023 from five nationwide centers affiliated with 365MC Li...

Predicting early mortality in hemodialysis patients: a deep learning approach using a nationwide prospective cohort in South Korea.

Scientific reports
Early mortality after hemodialysis (HD) initiation significantly impacts the longevity of HD patients. This study aimed to quantify the effect sizes of risk factors on mortality using various machine learning approaches. A cohort of 3284 HD patients ...

Hospital Length of Stay Prediction for Planned Admissions Using Observational Medical Outcomes Partnership Common Data Model: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Accurate hospital length of stay (LoS) prediction enables efficient resource management. Conventional LoS prediction models with limited covariates and nonstandardized data have limited reproducibility when applied to the general populati...

Bidirectional Long Short-Term Memory-Based Detection of Adverse Drug Reaction Posts Using Korean Social Networking Services Data: Deep Learning Approaches.

JMIR medical informatics
BACKGROUND: Social networking services (SNS) closely reflect the lives of individuals in modern society and generate large amounts of data. Previous studies have extracted drug information using relevant SNS data. In particular, it is important to de...

Development of a deep learning-based feature stream network for forecasting riverine harmful algal blooms from a network perspective.

Water research
Global increases in the occurrence of harmful algal blooms (HABs) are of major concern in water quality and resource management. A predictive model capable of quantifying the spatiotemporal associations between HABs and their influencing factors is r...

Improving fecal bacteria estimation using machine learning and explainable AI in four major rivers, South Korea.

The Science of the total environment
This study addresses the critical public health issue of fecal coliform contamination in the four major rivers in South Korea (Han, Nakdong, Geum, and Yeongsan rivers) by applying advanced machine learning (ML) algorithms combined with Explainable Ar...

Artificial intelligence-derived electrocardiographic aging and risk of atrial fibrillation: a multi-national study.

European heart journal
BACKGROUND AND AIMS: Artificial intelligence (AI) algorithms in 12-lead electrocardiogram (ECG) provides promising age prediction methods. This study investigated whether the discrepancy between ECG-derived AI-predicted age (AI-ECG age) and chronolog...