AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Retrospective Studies

Showing 101 to 110 of 8643 articles

Clear Filters

Development and validation of a CT-based radiomics machine learning model for differentiating immune-related interstitial pneumonia.

International immunopharmacology
INTRODUCTION: Immune checkpoint inhibitor-related interstitial pneumonia (CIP) poses a diagnostic challenge due to its radiographic similarity to other pneumonias. We developed a non-invasive model using CT imaging to differentiate CIP from other pne...

Machine learning models for predicting tibial intramedullary nail length.

BMC musculoskeletal disorders
BACKGROUND: Tibial intramedullary nailing (IMN) represents a standard treatment for fractures of the tibial shaft. Nevertheless, accurately predicting the appropriate nail length prior to surgery remains a challenging endeavour. Conventional techniqu...

A machine learning model for predicting acute respiratory distress syndrome risk in patients with sepsis using circulating immune cell parameters: a retrospective study.

BMC infectious diseases
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication associated with a high mortality rate in patients with sepsis. Early identification of patients with sepsis at high risk of developing ARDS is crucial for timely interven...

X-ray based radiomics machine learning models for predicting collapse of early-stage osteonecrosis of femoral head.

Scientific reports
This study aimed to develop an X-ray radiomics model for predicting collapse of early-stage osteonecrosis of the femoral head (ONFH). A total of 87 patients (111 hips; training set: n = 67, test set: n = 44) with non-traumatic ONFH at Association Res...

Development and external validation of a machine learning model to predict bronchopulmonary dysplasia using dynamic factors.

Scientific reports
We hypothesized that incorporating postnatal dynamic factors would enhance the prediction accuracy of bronchopulmonary dysplasia in preterm infants. This retrospective cohort study included neonates born before 32 weeks of gestation at Seoul National...

Identification and validation of a novel machine learning model for predicting severe pelvic endometriosis: A retrospective study.

Scientific reports
This study aimed to explore potential risk factors for severe endometriosis and to develop a model to predict the risk of severe endometriosis. A total of 308 patients with endometriosis were analyzed. Least absolute shrinkage and selection operator ...

Estimating individualized effectiveness of receiving successful recanalization for ischemic stroke cases using machine learning techniques.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
OBJECTIVES: Directly measuring the causal effect of mechanical thrombectomy (MT) for each ischemic stroke patient remains challenging, as it is impossible to observe the outcomes for both with and without successful recanalization in the same individ...

Reflective writing assignments in the era of GenAI: student behavior and attitudes suggest utility, not futility.

Advances in physiology education
Reflective writing is widely used in health sciences education, but overreliance on generative artificial intelligence (GenAI) could undermine the reflective writing process. To explore this concern, students in three undergraduate courses with refle...

Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study.

International journal of molecular sciences
Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to...

Smart contours: deep learning-driven internal gross tumor volume delineation in non-small cell lung cancer using 4D CT maximum and average intensity projections.

Radiation oncology (London, England)
BACKGROUND: Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly on multiple phases of ...