AIMC Topic: Retrospective Studies

Clear Filters Showing 571 to 580 of 9539 articles

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

AI-Based Identification Method for Cervical Transformation Zone Within Digital Colposcopy: Development and Multicenter Validation Study.

JMIR cancer
BACKGROUND: In low- and middle-income countries, cervical cancer remains a leading cause of death and morbidity for women. Early detection and treatment of precancerous lesions are critical in cervical cancer prevention, and colposcopy is a primary d...

Optimizing Initial Vancomycin Dosing in Hospitalized Patients Using Machine Learning Approach for Enhanced Therapeutic Outcomes: Algorithm Development and Validation Study.

Journal of medical Internet research
BACKGROUND: Vancomycin is commonly dosed using standard weight-based methods before dose adjustments are made through therapeutic drug monitoring (TDM). However, variability in initial dosing can lead to suboptimal therapeutic outcomes. A predictive ...

Deep Learning and Radiomics Discrimination of Coronary Chronic Total Occlusion and Subtotal Occlusion using CTA.

Academic radiology
RATIONALE AND OBJECTIVES: Coronary chronic total occlusion (CTO) and subtotal occlusion (STO) pose diagnostic challenges, differing in treatment strategies. Artificial intelligence and radiomics are promising tools for accurate discrimination. This s...

Natural language processing for identifying major bleeding risk in hospitalised medical patients.

Computers in biology and medicine
BACKGROUND: Major bleeding is a severe complication in critically ill medical patients, resulting in significant morbidity, mortality, and healthcare costs. This study aims to assess the incidence and risk factors for major bleeding in hospitalised m...

Ultrasound-based deep learning to differentiate salivary gland tumors.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: Accurate preoperative diagnosis is essential for selecting appropriate surgical interventions. This study aims to develop a deep learning model based on ultrasound (US) imaging to accurately differentiate between benign and malignant saliv...

Multimodal Deep Learning for Grading Carpal Tunnel Syndrome: A Multicenter Study in China.

Academic radiology
RATIONALE AND OBJECTIVES: Ultrasound (US)-based deep learning (DL) models for grading the severity of carpal tunnel syndrome (CTS) are scarce. We aimed to advance CTS grading by developing a joint-DL model integrating clinical information and multimo...

Deep Learning Based on Ultrasound Images Differentiates Parotid Gland Pleomorphic Adenomas and Warthin Tumors.

Ultrasonic imaging
Exploring the clinical significance of employing deep learning methodologies on ultrasound images for the development of an automated model to accurately identify pleomorphic adenomas and Warthin tumors in salivary glands. A retrospective study was c...

Machine learning-based risk prediction model for arteriovenous fistula stenosis.

European journal of medical research
BACKGROUND: Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.