AIMC Topic: Retrospective Studies

Clear Filters Showing 891 to 900 of 9539 articles

Enhancing deep learning methods for brain metastasis detection through cross-technique annotations on SPACE MRI.

European radiology experimental
BACKGROUND: Gadolinium-enhanced "sampling perfection with application-optimized contrasts using different flip angle evolution" (SPACE) sequence allows better visualization of brain metastases (BMs) compared to "magnetization-prepared rapid acquisiti...

Developing a three-dimensional convolutional neural network for automated full-volume multi-tissue segmentation of the shoulder with comparisons to Goutallier classification and partial volume muscle quality analysis.

Journal of shoulder and elbow surgery
BACKGROUND: Preoperative intramuscular fat (IMF) is a strong predictor of tendon failure after a rotator cuff repair. Due to the contemporary labor intensive and time-dependent manual segmentation required for quantitative assessment of IMF, clinical...

Association between deep learning radiomics based on placental MRI and preeclampsia with fetal growth restriction: A multicenter study.

European journal of radiology
PURPOSE: Preeclampsia (PE) is associated with placental insufficiency and could lead to adverse pregnancy outcomes. The study aimed to develop a placental T2-weighted image-based automatic quantitative model for the identification of PE pregnancies a...

Shoulder Musculoskeletal Disorder Rehabilitation Using a Robotic Device Based on Electromyography (EMG) Biofeedback: A Retrospective Cohort Study.

Medicina (Kaunas, Lithuania)
: While shoulder injuries represent the musculoskeletal disorders (MSDs) most encountered in physical therapy, there is no consensus on their management. In attempts to provide standardized and personalized treatment, a robotic-assisted device combin...

Development of an artificial intelligence-based application for the diagnosis of sarcopenia: a retrospective cohort study using the health examination dataset.

BMC medical informatics and decision making
BACKGROUND: Medical imaging techniques for diagnosing sarcopenia have been extensively investigated. Studies have proposed using the T-score and patient information as key diagnostic factors. However, these techniques have either been time-consuming ...

Deep learning radiomics nomogram for preoperatively identifying moderate-to-severe chronic cholangitis in children with pancreaticobiliary maljunction: a multicenter study.

BMC medical imaging
BACKGROUND: Long-term severe cholangitis can lead to dense adhesions and increased fragility of the bile duct, complicating surgical procedures and elevating operative risk in children with pancreaticobiliary maljunction (PBM). Consequently, preopera...

Eye-tracking dataset of endoscopist-AI teaming during colonoscopy: Retrospective and real-time acquisition.

Scientific data
Recent studies have demonstrated that integrating AI into colonoscopy procedures significantly improves the adenoma detection rate (ADR) and reduces the adenoma miss rate (AMR). However, few studies address the critical issue of endoscopist-AI collab...

High-resolution deep learning reconstruction for coronary CTA: compared efficacy of stenosis evaluation with other methods at in vitro and in vivo studies.

European radiology
OBJECTIVE: To directly compare coronary arterial stenosis evaluations by hybrid-type iterative reconstruction (IR), model-based IR (MBIR), deep learning reconstruction (DLR), and high-resolution deep learning reconstruction (HR-DLR) on coronary compu...

Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study.

European radiology
OBJECTIVES: Thyroid cancer, the only cancer that uses age as a specific predictor of survival, is increasing in incidence, yet it has a low mortality rate, which can lead to overdiagnosis and overtreatment. We developed an age-stratified deep learnin...

Habitat-Based Radiomics for Revealing Tumor Heterogeneity and Predicting Residual Cancer Burden Classification in Breast Cancer.

Clinical breast cancer
PURPOSE: To investigate the feasibility of characterizing tumor heterogeneity in breast cancer ultrasound images using habitat analysis technology and establish a radiomics machine learning model for predicting response to neoadjuvant chemotherapy (N...