AIMC Topic: Retrospective Studies

Clear Filters Showing 941 to 950 of 9539 articles

Establishing a preoperative predictive model for gallbladder adenoma and cholesterol polyps based on machine learning: a multicentre retrospective study.

World journal of surgical oncology
BACKGROUND: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperativ...

Identification of patient demographic, clinical, and SARS-CoV-2 genomic factors associated with severe COVID-19 using supervised machine learning: a retrospective multicenter study.

BMC infectious diseases
BACKGROUND: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus ...

Prediction of the Serial Alignment Change after Opening-Wedge High Tibial Osteotomy Based on Coronal Plane Alignment of the Knee Using Machine Learning Algorithm.

The journal of knee surgery
Categorization of alignment into phenotypes can be useful for predicting and analyzing postoperative alignment changes after opening-wedge high tibial osteotomy (OWHTO). The purposes of this study were to (1) develop a machine learning model for the ...

Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Nonenhanced MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: The spinal column is a frequent site for metastases, affecting over 30% of solid tumor patients. Identifying the primary tumor is essential for guiding clinical decisions but often requires resource-intensive diagnostics.

An Artificial Intelligence Model Using Diffusion Basis Spectrum Imaging Metrics Accurately Predicts Clinically Significant Prostate Cancer.

The Journal of urology
PURPOSE: Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) before biopsy and applied artificial intelligence models to these ...

Prediction of surgical necessity in children with ureteropelvic junction obstruction using machine learning.

Irish journal of medical science
BACKGROUND: Hydronephrosis developing at the ureteropelvic junction due to obstruction poses clinical challenges as it has the potential to cause renal damage.

Using artificial intelligence to evaluate adherence to best practices in one anastomosis gastric bypass: first steps in a real-world setting.

Surgical endoscopy
BACKGROUND: Safety in one anastomosis gastric bypass (OAGB) is judged by outcomes, but it seems reasonable to utilize best practices for safety, whose performance can be evaluated and therefore improved. We aimed to test an artificial intelligence-ba...

Development and Validation of Machine Learning-Based Model for Hospital Length of Stay in Patients Undergoing Endovascular Interventional Embolization for Intracranial Aneurysms.

World neurosurgery
OBJECTIVE: This study was to explore the factors associated with prolonged hospital length of stay (LOS) in patients with intracranial aneurysms (IAs) undergoing endovascular interventional embolization and construct prediction model machine learning...

Artificial intelligence-assisted platform performs high detection ability of hepatocellular carcinoma in CT images: an external clinical validation study.

BMC cancer
BACKGROUND: Accurate detection of hepatocellular carcinoma (HCC) in multiphasic contrast CT is essential for effective treatment and surgical planning. However, the variety of CT images, the misdiagnosis and missed diagnosis, and the inconsistent dia...