AIMC Topic: Risk Assessment

Clear Filters Showing 21 to 30 of 2514 articles

Predicting rapid kidney function decline in middle-aged and elderly Chinese adults using machine learning techniques.

BMC medical informatics and decision making
The rapid decline of kidney function in middle-aged and elderly people has become an increasingly serious public health problem. Machine learning (ML) technology has substantial potential to disease prediction. The present study use dataset from the ...

Towards prehospital risk stratification using deep learning for ECG interpretation in suspected acute coronary syndrome.

BMJ health & care informatics
OBJECTIVES: Most patients presenting with chest pain in the emergency medical services (EMS) setting are suspected of non-ST-elevation acute coronary syndrome (NSTE-ACS). Distinguishing true NSTE-ACS from non-cardiac chest pain based solely on the EC...

A systematic comparison of short-term and long-term mortality prediction in acute myocardial infarction using machine learning models.

BMC medical informatics and decision making
BACKGROUND AND OBJECTIVE: The machine learning (ML) models for acute myocardial infarction (AMI) are considered to have better predictive ability for mortality compared to conventional risk scoring models. However, previous ML prediction models have ...

Research on ischemic stroke risk assessment based on CTA radiomics and machine learning.

BMC medical imaging
BACKGROUND: The study explores the value of a model constructed by integrating CTA-based carotid plaque radiomic features, clinical risk factors, and plaque imaging characteristics for prognosticating the risk of ischemic stroke.

Machine learning-based prediction model for cognitive impairment risk in patients with chronic kidney disease.

PloS one
BACKGROUND: The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.

Prediction of depression risk in middle-aged and elderly Cardiovascular-Kidney-Metabolic syndrome patients by social and environmental determinants of health: an interpretable machine learning approach using longitudinal data from China.

Journal of health, population, and nutrition
BACKGROUND: Cardiovascular-Kidney-Metabolic (CKM) syndrome is a systemic disease characterized by pathophysiological interactions between the cardiovascular system, chronic kidney disease, and metabolic risk factors. In China, the prevalence of CKM i...

Mortality Prediction Performance Under Geographical, Temporal, and COVID-19 Pandemic Dataset Shift: External Validation of the Global Open-Source Severity of Illness Score Model.

Critical care explorations
BACKGROUND: Risk-prediction models are widely used for quality of care evaluations, resource management, and patient stratification in research. While established models have long been used for risk prediction, healthcare has evolved significantly, a...

Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning algorithm study.

Scientific reports
Kinesiophobia is particularly common in postoperative lung cancer patients, which causes patients may be reluctant to cough and move due to misperception, internal fear or fear of pain, and avoid rehabilitation training affecting postoperative recove...

Unsupervised learning-based quantitative analysis of CT intratumoral subregions predicts risk stratification of bladder cancer patients.

BMC medicine
BACKGROUND: Preoperative diagnosis of muscle invasion and American Joint Committee on Cancer (AJCC) stage plays a crucial role in guiding treatment strategies for bladder cancer (BCa). Utilizing quantitative analysis of tumor subregions via CT imagin...

Machine-learning model for predicting left atrial thrombus in patients with paroxysmal atrial fibrillation.

BMC cardiovascular disorders
OBJECTIVE: Left atrial thrombus (LAT) poses a significant risk for stroke and other thromboembolic complication in patients with atrial fibrillation (AF). This study aimed to evaluate the incidence and predictors of LAT in patients with paroxysmal AF...