AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Assessment

Showing 21 to 30 of 2312 articles

Clear Filters

Optimizing Strategy for Lung Cancer Screening: From Risk Prediction to Clinical Decision Support.

JCO clinical cancer informatics
PURPOSE: Low-dose computed tomography (LDCT) screening is effective in reducing lung cancer mortality by detecting the disease at earlier, more treatable stages. However, high false-positive rates and the associated risks of subsequent invasive diagn...

Predicting Agitation Events in the Emergency Department Through Artificial Intelligence.

JAMA network open
IMPORTANCE: Agitation events are increasing in emergency departments (EDs), exacerbating safety risks for patients and clinicians. A wide range of clinical etiologies and behavioral patterns in the emergency setting make agitation prediction difficul...

Development of a 5-Year Risk Prediction Model for Transition From Prediabetes to Diabetes Using Machine Learning: Retrospective Cohort Study.

Journal of medical Internet research
BACKGROUND: Diabetes has emerged as a critical global public health crisis. Prediabetes, as the transitional phase with 5%-10% annual progression to diabetes, offers a critical window for intervention. The lack of a 5-year risk prediction model for d...

Machine learning-based survival models for predicting rehospitalization of older hip fracture patients: a retrospective cohort study.

BMC musculoskeletal disorders
PURPOSE: To evaluate machine learning-based survival model roles in predicting rehospitalization after hip fractures to improve reduce the burden on the healthcare system.

Analysis of collapse risks under cut and cover method based on multi-state fuzzy Bayesian network.

PloS one
The collapse accidents under cut and cover method in metro station construction occurred frequently, leading to severe casualties and property damage. With increasing of metro station construction in China, more and more attention has been paid to co...

Identifying high-dose opioid prescription risks using machine learning: A focus on sociodemographic characteristics.

Journal of opioid management
OBJECTIVE: The objective of this study was to leverage machine learning techniques to analyze administrative claims and socioeconomic data, with the aim of identifying and interpreting the risk factors associated with high-dose opioid prescribing.

Machine learning to risk stratify chest pain patients with non-diagnostic electrocardiogram in an Asian emergency department.

Annals of the Academy of Medicine, Singapore
INTRODUCTION: Elevated troponin, while essential for diagnosing myocardial infarction, can also be present in non-myocardial infarction conditions. The myocardial-ischaemic-injury-index (MI3) algorithm is a machine learning algorithm that considers a...

Identifying individuals at risk of post-stroke depression: Development and validation of a predictive model.

Saudi medical journal
OBJECTIVES: To identify the factors associated with post-stroke depression (PSD) and develop a machine learning predictive model using a large dataset, considering sociodemographic, lifestyle, and clinical factors.

Machine Learning Multimodal Model for Delirium Risk Stratification.

JAMA network open
IMPORTANCE: Automating the identification of risk for developing hospital delirium with models that use machine learning (ML) could facilitate more rapid prevention, identification, and treatment of delirium. However, there are very few reports on th...

Unveiling new insights into migraine risk stratification using machine learning models of adjustable risk factors.

The journal of headache and pain
BACKGROUND: Migraine ranks as the second-leading cause of global neurological disability, affecting approximately 1.1 billion individuals worldwide with severe quality-of-life impairments. Although adjustable risk factors-including environmental expo...