AIMC Topic: Risk Assessment

Clear Filters Showing 291 to 300 of 2719 articles

A cross-sectional study comparing machine learning and logistic regression techniques for predicting osteoporosis in a group at high risk of cardiovascular disease among old adults.

BMC geriatrics
BACKGROUND: Osteoporosis has become a significant public health concern that necessitates the application of appropriate techniques to calculate disease risk. Traditional methods, such as logistic regression,have been widely used to identify risk fac...

Machine learning-based risk prediction model for arteriovenous fistula stenosis.

European journal of medical research
BACKGROUND: Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.

Prognostic value of SAPS II score for 28-day mortality in ICU patients with acute pulmonary embolism.

International journal of cardiology
BACKGROUND: Acute pulmonary embolism (APE) is a common and life-threatening emergency in intensive care units (ICUs). Effective risk assessment tools are essential to improve patient outcomes. This study aims to evaluate the association between Simpl...

Development and evaluation of a machine learning model for osteoporosis risk prediction in Korean women.

BMC women's health
BACKGROUND: The aim of this study was to develop a machine learning (ML) model for classifying osteoporosis in Korean women based on a large-scale population cohort study. This study also aimed to assess ML model performance compared with traditional...

Machine learning for risk prediction of acute kidney injury in patients with diabetes mellitus combined with heart failure during hospitalization.

Scientific reports
This study aimed to develop a machine learning (ML) model for predicting the risk of acute kidney injury (AKI) in diabetic patients with heart failure (HF) during hospitalization. Using data from 1,457 patients in the MIMIC-IV database, the study ide...

Unraveling the complexity of organophosphorus pesticides: Ecological risks, biochemical pathways and the promise of machine learning.

The Science of the total environment
Organophosphorus pesticides (OPPs) are widely used in agriculture but pose significant ecological and human health risks due to their persistence and toxicity in the environment. While microbial degradation offers a promising solution, gaps remain in...

Machine Learning Models predicting Decompensation in Cirrhosis.

Journal of gastrointestinal and liver diseases : JGLD
BACKGROUND AND AIMS: Decompensation of cirrhosis significantly decreases survival, thus, prevention of complications is paramount. We used machine learning techniques to identify parameters predicting decompensation.

Enhancing prediction and stratifying risk: machine learning and bayesian-learning models for catheter-related thrombosis in chemotherapy patients.

BMC cancer
BACKGROUND: Catheter-related thrombosis (CRT) is a serious complication in cancer patients undergoing chemotherapy, yet existing risk prediction models demonstrate limited accuracy. This study aimed to evaluate the clinical utility of machine learnin...

Construction and validation of a predictive model for intracardiac thrombus risk in patients with dilated cardiomyopathy: a retrospective study.

BMC cardiovascular disorders
BACKGROUND: Systemic embolic events due to exfoliation of intracardiac thrombus (ICT) are one of the catastrophic complications of dilated cardiomyopathy (DCM). This study intended to develop a prediction model to predict the risk of ICT in patients ...

Machine learning-based risk prediction model for pertussis in children: a multicenter retrospective study.

BMC infectious diseases
BACKGROUND: Pertussis is a highly contagious respiratory disease. Even though vaccination has reduced the incidence, cases have resurfaced in certain regions due to immune escape and waning vaccine efficacy. Identifying high-risk patients to mitigate...