AIMC Topic: ROC Curve

Clear Filters Showing 1341 to 1350 of 3402 articles

Predicting deleterious missense genetic variants via integrative supervised nonnegative matrix tri-factorization.

Scientific reports
Among an assortment of genetic variations, Missense are major ones which a small subset of them may led to the upset of the protein function and ultimately end in human diseases. Various machine learning methods were declared to differentiate deleter...

Vocal cord lesions classification based on deep convolutional neural network and transfer learning.

Medical physics
PURPOSE: Laryngoscopy, the most common diagnostic method for vocal cord lesions (VCLs), is based mainly on the visual subjective inspection of otolaryngologists. This study aimed to establish a highly objective computer-aided VCLs diagnosis system ba...

ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.

Scientific reports
Although advancing the therapeutic alternatives for treating deadly cancers has gained much attention globally, still the primary methods such as chemotherapy have significant downsides and low specificity. Most recently, Anticancer peptides (ACPs) h...

An early model to predict the risk of gestational diabetes mellitus in the absence of blood examination indexes: application in primary health care centres.

BMC pregnancy and childbirth
BACKGROUND: Gestational diabetes mellitus (GDM) is one of the critical causes of adverse perinatal outcomes. A reliable estimate of GDM in early pregnancy would facilitate intervention plans for maternal and infant health care to prevent the risk of ...

Optimizing hepatitis B virus screening in the United States using a simple demographics-based model.

Hepatology (Baltimore, Md.)
BACKGROUND AND AIMS: Chronic hepatitis B (CHB) affects >290 million persons globally, and only 10% have been diagnosed, presenting a severe gap that must be addressed. We developed logistic regression (LR) and machine learning (ML; random forest) mod...

CRNNTL: Convolutional Recurrent Neural Network and Transfer Learning for QSAR Modeling in Organic Drug and Material Discovery.

Molecules (Basel, Switzerland)
Molecular latent representations, derived from autoencoders (AEs), have been widely used for drug or material discovery over the past couple of years. In particular, a variety of machine learning methods based on latent representations have shown exc...

Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model.

Plant molecular biology
This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-meth...

Mental Stress Classification Based on a Support Vector Machine and Naive Bayes Using Electrocardiogram Signals.

Sensors (Basel, Switzerland)
Examining mental health is crucial for preventing mental illnesses such as depression. This study presents a method for classifying electrocardiogram (ECG) data into four emotional states according to the stress levels using one-against-all and naive...

Artificial intelligence modelling in differentiating core biopsies of fibroadenoma from phyllodes tumor.

Laboratory investigation; a journal of technical methods and pathology
Breast fibroepithelial lesions (FEL) are biphasic tumors which consist of benign fibroadenomas (FAs) and the rarer phyllodes tumors (PTs). FAs and PTs have overlapping features, but have different clinical management, which makes correct core biopsy ...