AIMC Topic:
ROC Curve

Clear Filters Showing 1341 to 1350 of 3174 articles

Construction and Validation of a Lung Cancer Diagnostic Model Based on 6-Gene Methylation Frequency in Blood, Clinical Features, and Serum Tumor Markers.

Computational and mathematical methods in medicine
Lung cancer has a high mortality rate. Promoting early diagnosis and screening of lung cancer is the most effective way to enhance the survival rate of lung cancer patients. Through computer technology, a comprehensive evaluation of genetic testing r...

Risk prediction for delayed clearance of high-dose methotrexate in pediatric hematological malignancies by machine learning.

International journal of hematology
This study aimed to establish a predictive model to identify children with hematologic malignancy at high risk for delayed clearance of high-dose methotrexate (HD-MTX) based on machine learning. A total of 205 patients were recruited. Five variables ...

A multi-conformational virtual screening approach based on machine learning targeting PI3Kγ.

Molecular diversity
Nowadays, more and more attention has been attracted to develop selective PI3Kγ inhibitors, but the unique structural features of PI3Kγ protein make it a very big challenge. In the present study, a virtual screening strategy based on machine learning...

Discovery of novel DGAT1 inhibitors by combination of machine learning methods, pharmacophore model and 3D-QSAR model.

Molecular diversity
DGAT1 plays a crucial controlling role in triglyceride biosynthetic pathways, which makes it an attractive therapeutic target for obesity. Thus, development of DGAT1 inhibitors with novel chemical scaffolds is desired and important in the drug discov...

Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion.

Clinical neuroradiology
PURPOSE: The objective of this study was to predict hematoma expansion (HE) by radiomic models based on different machine learning methods and determine the best radiomic model through the comparison.

Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology.

PloS one
BACKGROUND: The World Health Organization (WHO)-defined radiological pneumonia is a preferred endpoint in pneumococcal vaccine efficacy and effectiveness studies in children. Automating the WHO methodology may support more widespread application of t...

Machine learning enhances the performance of short and long-term mortality prediction model in non-ST-segment elevation myocardial infarction.

Scientific reports
Machine learning (ML) has been suggested to improve the performance of prediction models. Nevertheless, research on predicting the risk in patients with acute myocardial infarction (AMI) has been limited and showed inconsistency in the performance of...

A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm.

Scientific reports
Atrial fibrillation (AF) is the most prevalent arrhythmia and is associated with increased morbidity and mortality. Its early detection is challenging because of the low detection yield of conventional methods. We aimed to develop a deep learning-bas...

Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database.

Molecular diversity
Alzheimer's disease is the most common form of dementia, representing 60-70% of dementia cases. The enzyme acetylcholinesterase (AChE) cleaves the ester bonds in acetylcholine and plays an important role in the termination of acetylcholine activity a...

Application of deep learning in the detection of breast lesions with four different breast densities.

Cancer medicine
OBJECTIVE: This retrospective study evaluated the model from populations with different breast densities and showed the model's performance on malignancy prediction.