European journal of cancer (Oxford, England : 1990)
Jan 20, 2020
BACKGROUND: Deep learning convolutional neural networks (CNNs) show great potential for melanoma diagnosis. Melanoma thickness at diagnosis amongĀ others depends on melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodul...
Full-field optical coherence tomography (FF-OCT) has been reported with its label-free subcellular imaging performance. To realize quantitive cancer detection, the support vector machine model of classifying normal and cancerous human liver tissue is...
BACKGROUND: The aim of the study was to develop a deep learning (DL) algorithm to evaluate the pathological complete response (pCR) to neoadjuvant chemotherapy in breast cancer.
Subtle interstitial changes in the lung parenchyma of smokers, known as Interstitial Lung Abnormalities (ILA), have been associated with clinical outcomes, including mortality, even in the absence of Interstitial Lung Disease (ILD). Although several ...
PURPOSE: To develop and evaluate the performance of a fully-automated convolutional neural network (CNN)-based algorithm to evaluate hepatobiliary phase (HBP) adequacy of gadoxetate disodium (EOB)-enhanced MRI. Secondarily, we explored the potential ...
In general, chest radiographs (CXR) have high sensitivity and moderate specificity for active pulmonary tuberculosis (PTB) screening when interpreted by human readers. However, they are challenging to scale due to hardware costs and the dearth of pro...
BACKGROUND: Distinguishing ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC) regions in clinical biopsies constitutes a diagnostic challenge. Spatial transcriptomics (ST) is an in situ capturing method, which allows quantification ...
Journal of visualized experiments : JoVE
Jan 11, 2020
Mild cognitive impairment (MCI) is the first sign of dementia among elderly populations and its early detection is crucial in our aging societies. Common MCI tests are time-consuming such that indiscriminate massive screening would not be cost-effect...
Coronary artery disease (CAD) is the leading global cause of mortality and has substantial heritability with a polygenic architecture. Recent approaches of risk prediction were based on polygenic risk scores (PRS) not taking possible nonlinear effect...
Uterine corpus endometrial carcinoma (UCEC) is the second most common type of gynecological tumor. Several research studies have recently shown the potential of different ncRNAs as biomarkers for prognostics and diagnosis in different types of cancer...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.