BACKGROUND: Major depressive disorder (MDD) is notably underdiagnosed and undertreated due to its complex nature and subjective diagnostic methods. Biomarker identification would help provide a clearer understanding of MDD aetiology. Although machine...
BACKGROUND: Reliable differentiation of uveal melanoma and choroidal nevi is crucial to guide appropriate treatment, preventing unnecessary procedures for benign lesions and ensuring timely treatment for potentially malignant cases. The purpose of th...
Physical and engineering sciences in medicine
May 21, 2024
Surgical excision is the most effective treatment of skin carcinomas (basal cell carcinoma or squamous cell carcinoma). Preoperative assessment of tumoral margins plays a decisive role for a successful result. The aim of this work was to evaluate the...
BACKGROUND/AIMS: National guidelines of many countries set screening intervals for diabetic retinopathy (DR) based on grading of the last screening retinal images. We explore the potential of deep learning (DL) on images to predict progression to ref...
BACKGROUND: Diabetic retinopathy (DR) is a leading cause of blindness in adults worldwide. Artificial intelligence (AI) with autonomous deep learning algorithms has been increasingly used in retinal image analysis, particularly for the screening of r...
INTRODUCTION: The extraction decision significantly affects the treatment process and outcome. Therefore, it is crucial to make this decision with a more objective and standardized method. The objectives of this study were (1) to identify the best-pe...
Journal of gastroenterology and hepatology
May 20, 2024
BACKGROUND AND AIM: Reliable bowel preparation assessment is important in colonoscopy. However, current scoring systems are limited by laborious and time-consuming tasks and interobserver variability. We aimed to develop an artificial intelligence (A...
BACKGROUND: This study aims to identify unique metabolomics biomarkers associated with Type 2 Diabetes (T2D) and develop an accurate diagnostics model using tree-based machine learning (ML) algorithms integrated with bioinformatics techniques.
This study aimed to present a new approach to predict to delirium admitted to the acute palliative care unit. To achieve this, this study employed machine learning model to predict delirium in patients in palliative care and identified the significan...
Neural networks are frequently employed to model species distribution through backpropagation methods, known as backpropagation neural networks (BPNN). However, the complex structure of BPNN introduces parameter settings challenges, such as the deter...