AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Schizophrenia

Showing 221 to 230 of 270 articles

Clear Filters

Eye Movement Characteristics for Predicting a Transition to Psychosis: Longitudinal Changes and Implications.

Schizophrenia bulletin
BACKGROUND AND HYPOTHESIS: Substantive inquiry into the predictive power of eye movement (EM) features for clinical high-risk (CHR) conversion and their longitudinal trajectories is currently sparse. This study aimed to investigate the efficiency of ...

Semantic abnormalities in schizophrenia and bipolar disorder: A natural language processing approach.

Science progress
INTRODUCTION: The diagnostic boundaries between schizophrenia and bipolar disorder are controversial due to the ambiguity of psychiatric nosology. From this perspective, it is noteworthy that formal thought disorder has historically been considered p...

Diagnosis of Schizophrenia and Its Subtypes Using MRI and Machine Learning.

Brain and behavior
PURPOSE: The neurobiological heterogeneity present in schizophrenia remains poorly understood. This likely contributes to the limited success of existing treatments and the observed variability in treatment responses. Our objective was to employ magn...

Deconstructing Cognitive Impairment in Psychosis With a Machine Learning Approach.

JAMA psychiatry
IMPORTANCE: Cognitive functioning is associated with various factors, such as age, sex, education, and childhood adversity, and is impaired in people with psychosis. In addition to specific effects of the disorder, cognitive impairments may reflect a...

Exploring Schizophrenia Classification Through Multimodal MRI and Deep Graph Neural Networks: Unveiling Brain Region-Specific Weight Discrepancies and Their Association With Cell-Type Specific Transcriptomic Features.

Schizophrenia bulletin
BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (...

A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data.

Human brain mapping
Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging mod...

Making the most of errors: Utilizing erroneous classifications generated by machine-learning models of neuroimaging data to capture disorder heterogeneity.

Journal of psychopathology and clinical science
Within-disorder heterogeneity complicates mapping the neurobiological features of psychopathology to Diagnostic and Statistical Manual of Mental Disorders conceptualizations. The present study explored the patterns of diagnostic classification errors...

GENEVIC: GENetic data Exploration and Visualization via Intelligent interactive Console.

Bioinformatics (Oxford, England)
SUMMARY: The vast generation of genetic data poses a significant challenge in efficiently uncovering valuable knowledge. Introducing GENEVIC, an AI-driven chat framework that tackles this challenge by bridging the gap between genetic data generation ...

Interpretation of SNP combination effects on schizophrenia etiology based on stepwise deep learning with multi-precision data.

Briefings in functional genomics
Schizophrenia genome-wide association studies (GWAS) have reported many genomic risk loci, but it is unclear how they affect schizophrenia susceptibility through interactions of multiple SNPs. We propose a stepwise deep learning technique with multi-...

Unveiling Functional Biomarkers in Schizophrenia: Insights from Region of Interest Analysis Using Machine Learning.

Journal of integrative neuroscience
BACKGROUND: Schizophrenia is a complex and disabling mental disorder that represents one of the most important challenges for neuroimaging research. There were many attempts to understand these basic mechanisms behind the disorder, yet we know very l...