Background Patients who undergo surgery for cervical radiculopathy are at risk for developing adjacent segment disease (ASD). Identifying patients who will develop ASD remains challenging for clinicians. Purpose To develop and validate a deep learnin...
BACKGROUND: Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a machine ...
Dual-energy X-ray absorptiometry (DXA) is underutilized to measure bone mineral density (BMD) and evaluate fracture risk. We present an automated tool to identify fractures, predict BMD, and evaluate fracture risk using plain radiographs. The tool pe...
AJR. American journal of roentgenology
Sep 15, 2021
Shoulder MRI using standard multiplanar sequences requires long scan times. Accelerated sequences have tradeoffs in noise and resolution. Deep learning-based reconstruction (DLR) may allow reduced scan time with preserved image quality. The purpose...
European journal of nuclear medicine and molecular imaging
Sep 14, 2021
PURPOSE: The identification of pathological mediastinal lymph nodes is an important step in the staging of lung cancer, with the presence of metastases significantly affecting survival rates. Nodes are currently identified by a physician, but this pr...
Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with l...
Although deep learning networks applied to digital images have shown impressive results for many pathology-related tasks, their black-box approach and limitation in terms of interpretability are significant obstacles for their widespread clinical uti...
OBJECTIVES/HYPOTHESIS: Obstructive sleep apnea (OSA) is associated with higher risk of morbidity and mortality related to cardiovascular disease (CVD). Due to overlapping clinical risk factors, identifying high-risk patients with OSA who are likely t...
BACKGROUND: We aimed to construct an artificial intelligence (AI) guided identification of suspicious bone metastatic lesions from the whole-body bone scintigraphy (WBS) images by convolutional neural networks (CNNs).
OBJECTIVE: Over the past years, the application of artificial intelligence (AI) in medicine has increased rapidly, especially in diagnostics, and in the near future, the role of AI in medicine will become progressively more important. In this study, ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.