AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 981 to 990 of 2878 articles

Deep Learning for Adjacent Segment Disease at Preoperative MRI for Cervical Radiculopathy.

Radiology
Background Patients who undergo surgery for cervical radiculopathy are at risk for developing adjacent segment disease (ASD). Identifying patients who will develop ASD remains challenging for clinicians. Purpose To develop and validate a deep learnin...

Machine Learning Models for Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest Patients.

BioMed research international
BACKGROUND: Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a machine ...

Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning.

Nature communications
Dual-energy X-ray absorptiometry (DXA) is underutilized to measure bone mineral density (BMD) and evaluate fracture risk. We present an automated tool to identify fractures, predict BMD, and evaluate fracture risk using plain radiographs. The tool pe...

Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.

AJR. American journal of roentgenology
Shoulder MRI using standard multiplanar sequences requires long scan times. Accelerated sequences have tradeoffs in noise and resolution. Deep learning-based reconstruction (DLR) may allow reduced scan time with preserved image quality. The purpose...

An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients.

European journal of nuclear medicine and molecular imaging
PURPOSE: The identification of pathological mediastinal lymph nodes is an important step in the staging of lung cancer, with the presence of metastases significantly affecting survival rates. Nodes are currently identified by a physician, but this pr...

ECG data dependency for atrial fibrillation detection based on residual networks.

Scientific reports
Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with l...

Selection, Visualization, and Interpretation of Deep Features in Lung Adenocarcinoma and Squamous Cell Carcinoma.

The American journal of pathology
Although deep learning networks applied to digital images have shown impressive results for many pathology-related tasks, their black-box approach and limitation in terms of interpretability are significant obstacles for their widespread clinical uti...

Stratifying the Risk of Cardiovascular Disease in Obstructive Sleep Apnea Using Machine Learning.

The Laryngoscope
OBJECTIVES/HYPOTHESIS: Obstructive sleep apnea (OSA) is associated with higher risk of morbidity and mortality related to cardiovascular disease (CVD). Due to overlapping clinical risk factors, identifying high-risk patients with OSA who are likely t...

Automatic identification of suspicious bone metastatic lesions in bone scintigraphy using convolutional neural network.

BMC medical imaging
BACKGROUND: We aimed to construct an artificial intelligence (AI) guided identification of suspicious bone metastatic lesions from the whole-body bone scintigraphy (WBS) images by convolutional neural networks (CNNs).

Artificial intelligence in gynecologic cancers: Current status and future challenges - A systematic review.

Artificial intelligence in medicine
OBJECTIVE: Over the past years, the application of artificial intelligence (AI) in medicine has increased rapidly, especially in diagnostics, and in the near future, the role of AI in medicine will become progressively more important. In this study, ...