AIMC Topic: Stroke Volume

Clear Filters Showing 11 to 20 of 205 articles

Deep Learning-Enabled Assessment of Right Ventricular Function Improves Prognostication After Transcatheter Edge-to-Edge Repair for Mitral Regurgitation.

Circulation. Cardiovascular imaging
BACKGROUND: Right ventricular (RV) function has a well-established prognostic role in patients with severe mitral regurgitation (MR) undergoing transcatheter edge-to-edge repair (TEER) and is typically assessed using echocardiography-measured tricusp...

Deep learning model to identify and validate hypotension endotypes in surgical and critically ill patients.

British journal of anaesthesia
BACKGROUND: Hypotension is associated with organ injury and death in surgical and critically ill patients. In clinical practice, treating hypotension remains challenging because it can be caused by various underlying haemodynamic alterations. We aime...

ECGEFNet: A two-branch deep learning model for calculating left ventricular ejection fraction using electrocardiogram.

Artificial intelligence in medicine
Left ventricular systolic dysfunction (LVSD) and its severity are correlated with the prognosis of cardiovascular diseases. Early detection and monitoring of LVSD are of utmost importance. Left ventricular ejection fraction (LVEF) is an essential ind...

Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function.

Magnetic resonance imaging
OBJECTIVE: The total examination time can be reduced if high-quality two-dimensional (2D) cine images can be collected post-contrast to minimize non-scanning time prior to late gadolinium-enhanced imaging. This study aimed to assess the equivalency o...

Machine learning for stroke in heart failure with reduced ejection fraction but without atrial fibrillation: A post-hoc analysis of the WARCEF trial.

European journal of clinical investigation
BACKGROUND: The prediction of ischaemic stroke in patients with heart failure with reduced ejection fraction (HFrEF) but without atrial fibrillation (AF) remains challenging. Our aim was to evaluate the performance of machine learning (ML) in identif...

Natural Language Processing to Adjudicate Heart Failure Hospitalizations in Global Clinical Trials.

Circulation. Heart failure
BACKGROUND: Medical record review by a physician clinical events committee is the gold standard for identifying cardiovascular outcomes in clinical trials, but is labor-intensive and poorly reproducible. Automated outcome adjudication by artificial i...

Development and validation of a machine learning model to predict the risk of readmission within one year in HFpEF patients: Short title: Prediction of HFpEF readmission.

International journal of medical informatics
BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with elevated rates of readmission and mortality. Accurate prediction of readmission risk is essential for optimizing healthcare resources and enhancing patient outcomes...

Detection of Right and Left Ventricular Dysfunction in Pediatric Patients Using Artificial Intelligence-Enabled ECGs.

Journal of the American Heart Association
BACKGROUND: Early detection of left and right ventricular systolic dysfunction (LVSD and RVSD respectively) in children can lead to intervention to reduce morbidity and death. Existing artificial intelligence algorithms can identify LVSD and RVSD in ...

AI derived ECG global longitudinal strain compared to echocardiographic measurements.

Scientific reports
Left ventricular (LV) global longitudinal strain (LVGLS) is versatile; however, it is difficult to obtain. We evaluated the potential of an artificial intelligence (AI)-generated electrocardiography score for LVGLS estimation (ECG-GLS score) to diagn...