AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Support Vector Machine

Showing 281 to 290 of 4557 articles

Clear Filters

Enhancing brain tumor classification by integrating radiomics and deep learning features: A comprehensive study utilizing ensemble methods on MRI scans.

Journal of X-ray science and technology
BACKGROUND AND OBJECTIVE: This study aims to assess the effectiveness of combining radiomics features (RFs) with deep learning features (DFs) for classifying brain tumors-specifically Glioma, Meningioma, and Pituitary Tumor-using MRI scans and advanc...

Limbic/paralimbic connection weakening in preschool autism-spectrum disorder based on diffusion basis spectrum imaging.

The European journal of neuroscience
This study aims to investigate the value of basal ganglia and limbic/paralimbic networks alteration in identifying preschool children with ASD and normal controls using diffusion basis spectrum imaging (DBSI). DBSI data from 31 patients with ASD and ...

Machine learning-based prognostic prediction and surgical guidance for intrahepatic cholangiocarcinoma.

Bioscience trends
The prognosis following radical surgery for intrahepatic cholangiocarcinoma (ICC) is poor, and optimal follow-up strategies remain unclear, with ongoing debates regarding anatomic resection (AR) versus non-anatomic resection (NAR). This study include...

Optimizing critical quality attributes of fast disintegrating tablets using artificial neural networks: a scientific benchmark study.

Drug development and industrial pharmacy
OBJECTIVE: The objective of this study is to create predictive models utilizing machine learning algorithms, including Artificial Neural Networks (ANN), k-nearest neighbor (kNN), support vector machines (SVM), and linear regression, to predict critic...

Radiomics for differential diagnosis of Bosniak II-IV renal masses via CT imaging.

BMC cancer
RATIONALE AND OBJECTIVES: The management of complex renal cysts is guided by the Bosniak classification system, which may be inadequate for risk stratification of patients to determine the appropriate intervention. Radiomics models based on CT imagin...

Prediction of mortality in sepsis patients using stacked ensemble machine learning algorithm.

Journal of postgraduate medicine
INTRODUCTION: Machine learning (ML) has been tried in predicting outcomes following sepsis. This study aims to identify the utility of stacked ensemble algorithm in predicting mortality.

Development and validation of a machine-learning model to predict lymph node metastasis of intrahepatic cholangiocarcinoma: A retrospective cohort study.

Bioscience trends
Lymph node metastasis in intrahepatic cholangiocarcinoma significantly impacts overall survival, emphasizing the need for a predictive model. This study involved patients who underwent curative liver resection between different time periods. Three ma...

A multi-view prognostic model for diffuse large B-cell lymphoma based on kernel canonical correlation analysis and support vector machine.

BMC cancer
BACKGROUND AND OBJECTIVE: Positron emission tomography/computed tomography (PET/CT) is recommended as the standard imaging modality for diffuse large B-cell lymphoma (DLBCL) staging. However, many studies have neglected the role of patients' prognost...

Integrating Sentinel-1 data and machine learning for effective paddy field monitoring in Cauvery Delta Zone, Tamil Nadu, India.

Environmental monitoring and assessment
Paddy crop mapping is essential for agricultural monitoring, ensuring food security, and enhancing resource allocation. This study observes the Cauvery Delta Zone (CDZ), recognized as the rice bowl of Tamil Nadu and a crucial area for paddy farming i...

A rapid method for assessing seed drought resistance using integrated ID-BOA-SVM.

Analytical methods : advancing methods and applications
This study investigates the application of near-infrared spectroscopy (NIR) for assessing drought resistance in seeds, aiming to offer a rapid and efficient method suitable for large-scale primary screening. NIR spectroscopy is utilized to analyze fo...