AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tomography, X-Ray Computed

Showing 11 to 20 of 4529 articles

Clear Filters

Broadening the Net: Overcoming Challenges and Embracing Novel Technologies in Lung Cancer Screening.

American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting
Lung cancer is one of the leading causes of cancer-related mortality worldwide, with most cases diagnosed at advanced stages where curative treatment options are limited. Low-dose computed tomography (LDCT) for lung cancer screening (LCS) of individu...

Optimizing Strategy for Lung Cancer Screening: From Risk Prediction to Clinical Decision Support.

JCO clinical cancer informatics
PURPOSE: Low-dose computed tomography (LDCT) screening is effective in reducing lung cancer mortality by detecting the disease at earlier, more treatable stages. However, high false-positive rates and the associated risks of subsequent invasive diagn...

A novel framework for esophageal cancer grading: combining CT imaging, radiomics, reproducibility, and deep learning insights.

BMC gastroenterology
OBJECTIVE: This study aims to create a reliable framework for grading esophageal cancer. The framework combines feature extraction, deep learning with attention mechanisms, and radiomics to ensure accuracy, interpretability, and practical use in tumo...

Radiomics prediction of surgery in ulcerative colitis refractory to medical treatment.

Techniques in coloproctology
BACKGROUND: The surgeries in drug-resistant ulcerative colitis are determined by complex factors. This study evaluated the predictive performance of radiomics analysis on the basis of whether patients with ulcerative colitis in hospital were in the s...

The impact of a simple positioning aid device on the diagnostic performance of thyroid cancer in CT scans: a randomized controlled trial.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: To evaluate the effectiveness of a simple positioning aid device in neck CT scans for the diagnosis of thyroid cancer, with a focus on its influence on image quality and diagnostic accuracy.

Advancing brain tumor detection and classification in Low-Dose CT images using the innovative multi-layered deep neural network model.

Technology and health care : official journal of the European Society for Engineering and Medicine
BackgroundEffective brain tumour therapy and better patient outcomes depend on early tumour diagnosis. Accurate diagnosis can be hampered by traditional imaging techniques' frequent struggles with low resolution and noise, especially in Low Dose CT s...

A deep learning model combining circulating tumor cells and radiological features in the multi-classification of mediastinal lesions in comparison with thoracic surgeons: a large-scale retrospective study.

BMC medicine
BACKGROUND: CT images and circulating tumor cells (CTCs) are indispensable for diagnosing the mediastinal lesions by providing radiological and intra-tumoral information. This study aimed to develop and validate a deep multimodal fusion network (DMFN...

Enhancing efficient deep learning models with multimodal, multi-teacher insights for medical image segmentation.

Scientific reports
The rapid evolution of deep learning has dramatically enhanced the field of medical image segmentation, leading to the development of models with unprecedented accuracy in analyzing complex medical images. Deep learning-based segmentation holds signi...

Deep learning model for predicting the RAS oncogene status in colorectal cancer liver metastases.

Journal of cancer research and therapeutics
BACKGROUND: To develop a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CECT) to assess the rat sarcoma (RAS) oncogene status and predict targeted therapy response in colorectal cancer liver metastases (CRLM).