AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 371 to 380 of 4792 articles

Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.

Biomedical physics & engineering express
. This study presents machine learning (ML) models that predict if deep inspiration breath hold (DIBH) is needed based on lung dose in right-sided breast cancer patients during the initial computed tomography (CT) appointment.. Anatomic distances wer...

PEDRA-EFB0: colorectal cancer prognostication using deep learning with patch embeddings and dual residual attention.

Medical & biological engineering & computing
In computer-aided diagnosis systems, precise feature extraction from CT scans of colorectal cancer using deep learning is essential for effective prognosis. However, existing convolutional neural networks struggle to capture long-range dependencies a...

Robot-Assisted CT-Guided Biopsy with an Artificial Intelligence-Based Needle-Path Generator: An Experimental Evaluation Using a Phantom Model.

Journal of vascular and interventional radiology : JVIR
PURPOSE: To investigate the feasibility of a robotic system with artificial intelligence-based lesion detection and path planning for computed tomography (CT)-guided biopsy compared with the conventional freehand technique.

Unpaired Dual-Modal Image Complementation Learning for Single-Modal Medical Image Segmentation.

IEEE transactions on bio-medical engineering
OBJECTIVE: Multi-modal MR/CT image segmentation is an important task in disease diagnosis and treatment, but it is usually difficult to acquire aligned multi-modal images of a patient in clinical practice due to the high cost and specific allergic re...

Perfusion estimation from dynamic non-contrast computed tomography using self-supervised learning and a physics-inspired U-net transformer architecture.

International journal of computer assisted radiology and surgery
PURPOSE: Pulmonary perfusion imaging is a key lung health indicator with clinical utility as a diagnostic and treatment planning tool. However, current nuclear medicine modalities face challenges like low spatial resolution and long acquisition times...

Deep learning-based MVIT-MLKA model for accurate classification of pancreatic lesions: a multicenter retrospective cohort study.

La Radiologia medica
BACKGROUND: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images t...

Opportunistic AI for enhanced cardiovascular disease risk stratification using abdominal CT scans.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
This study introduces the Deep Learning-based Cardiovascular Disease Incident (DL-CVDi) score, a novel biomarker derived from routine abdominal CT scans, optimized to predict cardiovascular disease (CVD) risk using deep survival learning. CT imaging,...

Deep-learning based electromagnetic navigation system for transthoracic percutaneous puncture of small pulmonary nodules.

Scientific reports
Percutaneous transthoracic puncture of small pulmonary nodules is technically challenging. We developed a novel electromagnetic navigation puncture system for the puncture of sub-centimeter lung nodules by combining multiple deep learning models with...

Dual-domain Wasserstein Generative Adversarial Network with Hybrid Loss for Low-dose CT Imaging.

Physics in medicine and biology
Low-dose computed tomography (LDCT) has gained significant attention in hospitals and clinics as a popular imaging modality for reducing the risk of x-ray radiation. However, reconstructed LDCT images often suffer from undesired noise and artifacts, ...