AIMC Topic: Transcription Factors

Clear Filters Showing 31 to 40 of 206 articles

The shared biomarkers and immune landscape in psoriatic arthritis and rheumatoid arthritis: Findings based on bioinformatics, machine learning and single-cell analysis.

PloS one
OBJECTIVE: Psoriatic arthritis (PsA) and rheumatoid arthritis (RA) are the most common types of inflammatory musculoskeletal disorders that share overlapping clinical features and complications. The aim of this study was to identify shared marker gen...

Exploration of common pathogenesis and candidate hub genes between HIV and monkeypox co-infection using bioinformatics and machine learning.

Scientific reports
This study explored the pathogenesis of human immunodeficiency virus (HIV) and monkeypox co-infection, identifying candidate hub genes and potential drugs using bioinformatics and machine learning. Datasets for HIV (GSE 37250) and monkeypox (GSE 2412...

Transcriptional regulation of hypoxic cancer cell metabolism and artificial intelligence.

Trends in cancer
Gene expression regulation in hypoxic tumor microenvironments is mediated by O responsive transcription factors (OR-TFs), fine-tuning cancer cell metabolic demand for O according to its availability. Here, we discuss key OR-TFs and emerging artificia...

Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy.

Journal of medicinal chemistry
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recogniz...

Identification of mitophagy-related genes and analysis of immune infiltration in the astrocytes based on machine learning in the pathogenesis of major depressive disorder.

Journal of affective disorders
BACKGROUNDS: Major depressive disorder (MDD) is a pervasive mental and mood disorder with complicated and heterogeneous etiology. Mitophagy, a selective autophagy of cells, specifically eliminates dysfunctional mitochondria. The mitochondria dysfunct...

Predicting splicing patterns from the transcription factor binding sites in the promoter with deep learning.

BMC genomics
BACKGROUND: Alternative splicing is a pivotal mechanism of post-transcriptional modification that contributes to the transcriptome plasticity and proteome diversity in metazoan cells. Although many splicing regulations around the exon/intron regions ...

Cross-Species Prediction of Transcription Factor Binding by Adversarial Training of a Novel Nucleotide-Level Deep Neural Network.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Cross-species prediction of TF binding remains a major challenge due to the rapid evolutionary turnover of individual TF binding sites, resulting in cross-species predictive performance being consistently worse than within-species performance. In thi...

AI-Assisted Rational Design and Activity Prediction of Biological Elements for Optimizing Transcription-Factor-Based Biosensors.

Molecules (Basel, Switzerland)
The rational design, activity prediction, and adaptive application of biological elements (bio-elements) are crucial research fields in synthetic biology. Currently, a major challenge in the field is efficiently designing desired bio-elements and acc...

TFscope: systematic analysis of the sequence features involved in the binding preferences of transcription factors.

Genome biology
Characterizing the binding preferences of transcription factors (TFs) in different cell types and conditions is key to understand how they orchestrate gene expression. Here, we develop TFscope, a machine learning approach that identifies sequence fea...

Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network.

Biophysical reports
The gene regulatory network (GRN) of biological cells governs a number of key functionalities that enable them to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and operational prin...