AIMC Topic: Treatment Failure

Clear Filters Showing 1 to 10 of 34 articles

Artificial intelligence-based prediction of treatment failure and medication non-adherence in overactive bladder management.

BMC urology
BACKGROUND: Overactive bladder management presents significant challenges, with treatment failures and medication non-adherence posing substantial barriers to patient outcomes. Early prediction of these challenges could enable timely interventions an...

The application of super-resolution ultrasound radiomics models in predicting the failure of conservative treatment for ectopic pregnancy.

Reproductive biology and endocrinology : RB&E
BACKGROUND: Conservative treatment remains a viable option for selected patients with ectopic pregnancy (EP), but failure may lead to rupture and serious complications. Currently, serum β-hCG is the main predictor for treatment outcomes, yet its accu...

Machine learning-based forecast of Helmet-CPAP therapy failure in Acute Respiratory Distress Syndrome patients.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive respiratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe medical condition diagnosed when symptoms like ...

Predictive accuracy of machine learning models for conservative treatment failure in thoracolumbar burst fractures.

BMC musculoskeletal disorders
BACKGROUND: The management of patients with thoracolumbar burst fractures remains a topic of debate, with conservative treatment being successful in most cases but not all. This study aimed to assess the utility of machine learning models (MLMs) in p...

Unsupervised Machine Learning to Identify Risk Factors of Pyeloplasty Failure in Ureteropelvic Junction Obstruction.

Journal of endourology
In adult patients with ureteropelvic junction obstruction (UPJO), little data exist on predicting pyeloplasty outcome, and there is no unified definition of pyeloplasty success. As such, defining pyeloplasty success retrospectively is particularly v...

A transparent machine learning algorithm uncovers HbA1c patterns associated with therapeutic inertia in patients with type 2 diabetes and failure of metformin monotherapy.

International journal of medical informatics
AIMS: This study aimed to identify and categorize the determinants influencing the intensification of therapy in Type 2 Diabetes (T2D) patients with suboptimal blood glucose control despite metformin monotherapy.

Prediction of the treatment response and local failure of patients with brain metastasis treated with stereotactic radiosurgery using machine learning: A systematic review and meta-analysis.

Neurosurgical review
BACKGROUND: Stereotactic radiosurgery (SRS) effectively treats brain metastases. It can provide local control, symptom relief, and improved survival rates, but it poses challenges in selecting optimal candidates, determining dose and fractionation, m...

Deep Learning-Guided Dosimetry for Mitigating Local Failure of Patients With Non-Small Cell Lung Cancer Receiving Stereotactic Body Radiation Therapy.

International journal of radiation oncology, biology, physics
PURPOSE: Non-small cell lung cancer (NSCLC) stereotactic body radiation therapy with 50 Gy/5 fractions is sometimes considered controversial, as the nominal biologically effective dose (BED) of 100 Gy is felt by some to be insufficient for long-term ...