Medical dosimetry : official journal of the American Association of Medical Dosimetrists
Oct 21, 2022
Accurate clinical target volume (CTV) delineation is important for head and neck intensity-modulated radiation therapy. However, delineation is time-consuming and susceptible to interobserver variability (IOV). Based on a manual contouring process co...
OBJECTIVE: To examine whether the machine-learning approach using 18-fludeoxyglucose positron emission tomography (F-FDG-PET)-based radiomic and deep-learning features is useful for predicting the pathological risk subtypes of thymic epithelial tumor...
OBJECTIVES: To demonstrate the effectiveness of automatic segmentation of diffuse large B-cell lymphoma (DLBCL) in 3D FDG-PET scans using a deep learning approach and validate its value in prognosis in an external validation cohort.
OBJECTIVES: The lung nodule volume determined by CT is used for nodule diagnoses and monitoring tumor responses to therapy. Increased image noise on low-dose CT degrades the measurement accuracy of the lung nodule volume. We compared the volumetric a...
BACKGROUND: Accurate target volume delineation is a prerequisite for high-precision radiotherapy. However, manual delineation is resource-demanding and prone to interobserver variation. An automatic delineation approach could potentially save time an...
BACKGROUND: Identification of molecular mechanisms that determine tumour progression in cancer patients is a prerequisite for developing new disease treatment guidelines. Even though the predictive performance of current machine learning models is pr...
BACKGROUND: Gadolinium-based contrast agents (GBCAs) are widely used to enhance tissue contrast during MRI scans and play a crucial role in the management of patients with cancer. However, studies have shown gadolinium deposition in the brain after r...
Efficient, reliable and reproducible target volume delineation is a key step in the effective planning of breast radiotherapy. However, post-operative breast target delineation is challenging as the contrast between the tumor bed volume (TBV) and nor...
OBJECTIVES: We aimed to build a survival system by combining a highly-accurate machine learning (ML) model with explainable artificial intelligence (AI) techniques to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma (NPC...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.