AIMC Topic: United States

Clear Filters Showing 711 to 720 of 1288 articles

Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction.

JACC. Heart failure
OBJECTIVES: This study sought to develop models for predicting mortality and heart failure (HF) hospitalization for outpatients with HF with preserved ejection fraction (HFpEF) in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with...

Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement.

Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
This is a condensed summary of an international multisociety statement on ethics of artificial intelligence (AI) in radiology produced by the ACR, European Society of Radiology, RSNA, Society for Imaging Informatics in Medicine, European Society of M...

Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement.

Radiology
This is a condensed summary of an international multisociety statement on ethics of artificial intelligence (AI) in radiology produced by the ACR, European Society of Radiology, RSNA, Society for Imaging Informatics in Medicine, European Society of M...

A comparison of machine learning algorithms for the surveillance of autism spectrum disorder.

PloS one
OBJECTIVE: The Centers for Disease Control and Prevention (CDC) coordinates a labor-intensive process to measure the prevalence of autism spectrum disorder (ASD) among children in the United States. Random forests methods have shown promise in speedi...

Comparing artificial intelligence techniques for chlorophyll-a prediction in US lakes.

Environmental science and pollution research international
Chlorophyll-a (CHLA) is a key indicator to represent eutrophication status in lakes. In this study, CHLA, total phosphorus (TP), total nitrogen (TN), turbidity (TB), and Secchi depth (SD) collected by the United States Environmental Protection Agency...

Development and validation of the automated imaging differentiation in parkinsonism (AID-P): a multicentre machine learning study.

The Lancet. Digital health
BACKGROUND: Development of valid, non-invasive biomarkers for parkinsonian syndromes is crucially needed. We aimed to assess whether non-invasive diffusion-weighted MRI can distinguish between parkinsonian syndromes using an automated imaging approac...

Development and Validation of the Automated Imaging Differentiation in Parkinsonism (AID-P): A Multi-Site Machine Learning Study.

The Lancet. Digital health
BACKGROUND: There is a critical need to develop valid, non-invasive biomarkers for Parkinsonian syndromes. The current 17-site, international study assesses whether non-invasive diffusion MRI (dMRI) can distinguish between Parkinsonian syndromes.

Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data.

PloS one
Colorectal cancer (CRC) is third in prevalence and mortality among all cancers in the US. Currently, the United States Preventative Services Task Force (USPSTF) recommends anyone ages 50-75 and/or with a family history to be screened for CRC. To impr...