AIMC Topic: Vascular Calcification

Clear Filters Showing 51 to 60 of 83 articles

Deep Learning-Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects.

Circulation. Cardiovascular imaging
BACKGROUND: Epicardial adipose tissue (EAT) volume (cm) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenua...

Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols.

Radiology
Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method ...

Development and application of artificial intelligence in cardiac imaging.

The British journal of radiology
In this review, we describe the technical aspects of artificial intelligence (AI) in cardiac imaging, starting with radiomics, basic algorithms of deep learning and application tasks of algorithms, until recently the availability of the public databa...

Coronary artery calcium score quantification using a deep-learning algorithm.

Clinical radiology
AIM: To investigate the impact of a deep-learning algorithm on the quantification of coronary artery calcium score (CACS) and the stratification of cardiac risk.

Motion-corrected coronary calcium scores by a convolutional neural network: a robotic simulating study.

European radiology
OBJECTIVE: To classify motion-induced blurred images of calcified coronary plaques so as to correct coronary calcium scores on nontriggered chest CT, using a deep convolutional neural network (CNN) trained by images of motion artifacts.

Machine learning in cardiac CT: Basic concepts and contemporary data.

Journal of cardiovascular computed tomography
Propelled by the synergy of the groundbreaking advancements in the ability to analyze high-dimensional datasets and the increasing availability of imaging and clinical data, machine learning (ML) is poised to transform the practice of cardiovascular ...