RATIONALE AND OBJECTIVES: To determine if super-resolution deep learning reconstruction (SR-DLR) improves the depiction of cranial nerves and interobserver agreement when assessing neurovascular conflict in 3D fast asymmetric spin echo (3D FASE) brai...
RATIONALE AND OBJECTIVES: To establish and validate a predictive multi-machine learning model for the long-term efficacy of uterine artery embolization (UAE) in the treatment of adenomyosis based on habitat subregions.
RATIONALE AND OBJECTIVES: Lymphovascular invasion (LVI) plays a significant role in precise treatments of non-small cell lung cancer (NSCLC). This study aims to build a non-invasive LVI prediction diagnosis model by combining preoperative CT images w...
RATIONALE AND OBJECTIVES: We examined the effectiveness of computed tomography (CT)-based deep learning (DL) models in differentiating benign and malignant solid pulmonary nodules (SPNs) ≤ 8 mm.
RATIONALE AND OBJECTIVES: To develop an efficient machine-learning model using pituitary MRI radiomics and clinical data to differentiate growth hormone deficiency (GHD) from idiopathic short stature (ISS), making the diagnostic process more acceptab...
RATIONALE AND OBJECTIVES: Artificial intelligence (AI) technologies are rapidly evolving and offering new advances almost on a day-by-day basis, including various tools for manuscript generation and modification. On the other hand, these potentially ...
RATIONALE AND OBJECTIVES: The proliferative nature of hepatocellular carcinoma (HCC) is closely related to early recurrence following radical resection. This study develops and validates a deep learning (DL) prediction model to distinguish between pr...
RATIONALE AND OBJECTIVES: To build a risk stratification by incorporating PET/CT-based deep learning features and whole-body metabolic tumor volume (MTV), which was to make predictions about overall survival (OS) and progression-free survival (PFS) f...
RATIONALE AND OBJECTIVES: To develop and validate a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CT) to identify the primary source of liver metastases.
RATIONALE AND OBJECTIVES: To differentiate early-onset schizophrenia (EOS) from early-onset bipolar disorder (EBD) using surface-based morphometry measurements and brain volumes using machine learning (ML) algorithms.