AI Medical Compendium Journal:
Communications biology

Showing 131 to 140 of 154 articles

Transfer learning efficiently maps bone marrow cell types from mouse to human using single-cell RNA sequencing.

Communications biology
Biomedical research often involves conducting experiments on model organisms in the anticipation that the biology learnt will transfer to humans. Previous comparative studies of mouse and human tissues were limited by the use of bulk-cell material. H...

Image-based phenotyping of disaggregated cells using deep learning.

Communications biology
The ability to phenotype cells is fundamentally important in biological research and medicine. Current methods rely primarily on fluorescence labeling of specific markers. However, there are many situations where this approach is unavailable or undes...

Analyzing protein dynamics from fluorescence intensity traces using unsupervised deep learning network.

Communications biology
We propose an unsupervised deep learning network to analyze the dynamics of membrane proteins from the fluorescence intensity traces. This system was trained inĀ an unsupervised manner with the raw experimental time traces and synthesized ones, so nei...

Machine learning enables improved runtime and precision for bio-loggers on seabirds.

Communications biology
Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspe...

Spatiotemporal identification of druggable binding sites using deep learning.

Communications biology
Identification of novel protein binding sites expands druggable genome and opens new opportunities for drug discovery. Generally, presence or absence of a binding site depends on the three-dimensional conformation of a protein, making binding site id...

Machine learning assistive rapid, label-free molecular phenotyping of blood with two-dimensional NMR correlational spectroscopy.

Communications biology
Translation of the findings in basic science and clinical research into routine practice is hampered by large variations in human phenotype. Developments in genotyping and phenotyping, such as proteomics and lipidomics, are beginning to address these...

A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model.

Communications biology
The analyses of multi-omics data have revealed candidate genes for objective traits. However, they are integrated poorly, especially in non-model organisms, and they pose a great challenge for prioritizing candidate genes for follow-up experimental v...

Rapid detection of microbiota cell type diversity using machine-learned classification of flow cytometry data.

Communications biology
The study of complex microbial communities typically entails high-throughput sequencing and downstream bioinformatics analyses. Here we expand and accelerate microbiota analysis by enabling cell type diversity quantification from multidimensional flo...

Macroscale and microcircuit dissociation of focal and generalized human epilepsies.

Communications biology
Thalamo-cortical pathology plays key roles in both generalized and focal epilepsies, but there is little work directly comparing these syndromes at the level of whole-brain mechanisms. Using multimodal imaging, connectomics, and computational simulat...

Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution.

Communications biology
In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this proce...