AI Medical Compendium Journal:
European journal of radiology

Showing 91 to 100 of 296 articles

Role of artificial intelligence in brain tumour imaging.

European journal of radiology
Artificial intelligence (AI) is a rapidly evolving field with many neuro-oncology applications. In this review, we discuss how AI can assist in brain tumour imaging, focusing on machine learning (ML) and deep learning (DL) techniques. We describe how...

Development of a machine learning model for predicting pneumothorax risk in coaxial core needle biopsy (≤3 cm).

European journal of radiology
PURPOSE: The aim is to devise a machine learning algorithm exploiting preoperative clinical data to forecast the hazard of pneumothorax post-coaxial needle lung biopsy (CCNB), thereby informing clinical decision-making and enhancing perioperative car...

Radiomics and artificial intelligence: General notions and applications in the carotid vulnerable plaque.

European journal of radiology
Carotid atherosclerosis plays a substantial role in cardiovascular morbidity and mortality. Given the multifaceted impact of this disease, there has been increasing interest in harnessing artificial intelligence (AI) and radiomics as complementary to...

Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects.

European journal of radiology
PURPOSE: This review provides an overview of the current state of artificial intelligence (AI) technology for automated detection of breast cancer in digital mammography (DM) and digital breast tomosynthesis (DBT). It aims to discuss the technology, ...

Thin-slice elbow MRI with deep learning reconstruction: Superior diagnostic performance of elbow ligament pathologies.

European journal of radiology
PURPOSE: With the slice thickness routinely used in elbow MRI, small or subtle lesions may be overlooked or misinterpreted as insignificant. To compare 1 mm slice thickness MRI (1 mm MRI) with deep learning reconstruction (DLR) to 3 mm slice thicknes...

Deep learning-based radiomics of computed tomography angiography to predict adverse events after initial endovascular repair for acute uncomplicated Stanford type B aortic dissection.

European journal of radiology
PURPOSE: This study aimed to construct a predictive model integrating deep learning-derived radiomic features from computed tomography angiography (CTA) and clinical biomarkers to forecast postoperative adverse events (AEs) in patients with acute unc...

Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification.

European journal of radiology
OBJECTIVES: This study aimed to investigate tumor heterogeneity of colorectal liver metastases (CRLM) and stratify the patients into different risk groups of prognoses following liver resection by applying an unsupervised radiomics machine-learning a...