The rapid advancements in spatially resolved transcriptomics (SRT) enable the characterization of gene expressions while preserving spatial information. However, high dropout rates and noise hinder accurate spatial domain identification for understan...
BACKGROUND: The incidence and mortality of endometrial cancer (EC) is on the rise. Eighty-five percent of ECs depend on estrogen receptor alpha (ERα) for proliferation, but little is known about its transcriptional regulation in these tumors.
We introduce ChromActivity, a computational framework for predicting and annotating regulatory activity across the genome through integration of multiple epigenomic maps and various functional characterization datasets. ChromActivity generates genome...
BACKGROUND: Adenine base editors (ABEs) enable the conversion of A•T to G•C base pairs. Since the sequence of the target locus influences base editing efficiency, efforts have been made to develop computational models that can predict base editing ou...
BACKGROUND: Cell-free RNAs (cfRNAs) can be detected in biofluids and have emerged as valuable disease biomarkers. Accurate identification of the fragmented cfRNA signals, especially those originating from pathological cells, is crucial for understand...
High-throughput multi-omic molecular profiling allows the probing of biological systems at unprecedented resolution. However, integrating and interpreting high-dimensional, sparse, and noisy multimodal datasets remains challenging. Deriving new biolo...
Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with real...
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to in...
Discovering a lower-dimensional embedding of single-cell data can improve downstream analysis. The embedding should encapsulate both the high-level features and low-level variations. While existing generative models attempt to learn such low-dimensio...
BACKGROUND: Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and ...