AI Medical Compendium Journal:
Genome biology

Showing 1 to 10 of 89 articles

DeepGFT: identifying spatial domains in spatial transcriptomics of complex and 3D tissue using deep learning and graph Fourier transform.

Genome biology
The rapid advancements in spatially resolved transcriptomics (SRT) enable the characterization of gene expressions while preserving spatial information. However, high dropout rates and noise hinder accurate spatial domain identification for understan...

Endometrial tumorigenesis involves epigenetic plasticity demarcating non-coding somatic mutations and 3D-genome alterations.

Genome biology
BACKGROUND: The incidence and mortality of endometrial cancer (EC) is on the rise. Eighty-five percent of ECs depend on estrogen receptor alpha (ERα) for proliferation, but little is known about its transcriptional regulation in these tumors.

ChromActivity: integrative epigenomic and functional characterization assay based annotation of regulatory activity across diverse human cell types.

Genome biology
We introduce ChromActivity, a computational framework for predicting and annotating regulatory activity across the genome through integration of multiple epigenomic maps and various functional characterization datasets. ChromActivity generates genome...

Predicting adenine base editing efficiencies in different cellular contexts by deep learning.

Genome biology
BACKGROUND: Adenine base editors (ABEs) enable the conversion of A•T to G•C base pairs. Since the sequence of the target locus influences base editing efficiency, efforts have been made to develop computational models that can predict base editing ou...

Peak analysis of cell-free RNA finds recurrently protected narrow regions with clinical potential.

Genome biology
BACKGROUND: Cell-free RNAs (cfRNAs) can be detected in biofluids and have emerged as valuable disease biomarkers. Accurate identification of the fragmented cfRNA signals, especially those originating from pathological cells, is crucial for understand...

MIDAA: deep archetypal analysis for interpretable multi-omic data integration based on biological principles.

Genome biology
High-throughput multi-omic molecular profiling allows the probing of biological systems at unprecedented resolution. However, integrating and interpreting high-dimensional, sparse, and noisy multimodal datasets remains challenging. Deriving new biolo...

CNRein: an evolution-aware deep reinforcement learning algorithm for single-cell DNA copy number calling.

Genome biology
Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with real...

aurora: a machine learning gwas tool for analyzing microbial habitat adaptation.

Genome biology
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to in...

scVAEDer: integrating deep diffusion models and variational autoencoders for single-cell transcriptomics analysis.

Genome biology
Discovering a lower-dimensional embedding of single-cell data can improve downstream analysis. The embedding should encapsulate both the high-level features and low-level variations. While existing generative models attempt to learn such low-dimensio...

Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease.

Genome biology
BACKGROUND: Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and ...