AI Medical Compendium Journal:
JCO clinical cancer informatics

Showing 1 to 10 of 163 articles

Clinical Trial Design Approach to Auditing Language Models in Health Care Setting.

JCO clinical cancer informatics
PURPOSE: Rapid advancements in natural language processing have led to the development of sophisticated language models. Inspired by their success, these models are now used in health care for tasks such as clinical documentation and medical record c...

Error Reduction in Leukemia Machine Learning Classification With Conformal Prediction.

JCO clinical cancer informatics
PURPOSE: Recent advances in machine learning have led to the development of classifiers that predict molecular subtypes of acute lymphoblastic leukemia (ALL) using RNA-sequencing (RNA-seq) data. Although these models have shown promising results, the...

Use of Large Language Models in Clinical Cancer Research.

JCO clinical cancer informatics
Artificial intelligence (AI) is increasingly being applied to clinical cancer research, driving precision oncology objectives by gathering clinical data at scales that were not previously possible. Although small, domain-specific models have been use...

Optimizing Strategy for Lung Cancer Screening: From Risk Prediction to Clinical Decision Support.

JCO clinical cancer informatics
PURPOSE: Low-dose computed tomography (LDCT) screening is effective in reducing lung cancer mortality by detecting the disease at earlier, more treatable stages. However, high false-positive rates and the associated risks of subsequent invasive diagn...

Predictive Model of Objective Response to Nivolumab Monotherapy for Advanced Renal Cell Carcinoma by Machine Learning Using Genetic and Clinical Data: The SNiP-RCC Study.

JCO clinical cancer informatics
PURPOSE: Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody ...

Decoding Recurrence in Early-Stage and Locoregionally Advanced Non-Small Cell Lung Cancer: Insights From Electronic Health Records and Natural Language Processing.

JCO clinical cancer informatics
PURPOSE: Recurrences after curative resection in early-stage and locoregionally advanced non-small cell lung cancer (NSCLC) are common, necessitating a nuanced understanding of associated risk factors. This study aimed to establish a natural language...

Development of a Machine Learning Algorithm to Predict Abnormalities in Serum Phosphate in a Large Oncology Cohort.

JCO clinical cancer informatics
PURPOSE: Serum phosphate is commonly measured in oncology patients because of the relationship between oncologic conditions and treatments with abnormal phosphate. All patients attending our institution, a large specialist oncology center, have a sta...

Machine Learning Models of Early Longitudinal Toxicity Trajectories Predict Cetuximab Concentration and Metastatic Colorectal Cancer Survival in the Canadian Cancer Trials Group/AGITG CO.17/20 Trials.

JCO clinical cancer informatics
PURPOSE: Cetuximab (CET), targeting the epidermal growth factor receptor, is a systemic treatment option for patients with colorectal cancer. One known predictive factor for CET efficacy is the presence of CET-related rash; other putative toxicity fa...

Using Real-World Data for Machine-Learning Algorithms to Predict the Treatment Response in Advanced Melanoma: A Pilot Study for Personalizing Cancer Care.

JCO clinical cancer informatics
PURPOSE: The use of real-world data (RWD) in oncology is becoming increasingly important for clinical decision making and tailoring treatment. Despite the significant success of targeted therapy and immunotherapy in advanced melanoma, substantial var...

Impact of Tumor Location on Predicting Early-Stage Breast Cancer Patient Survivability Using Explainable Machine Learning Models.

JCO clinical cancer informatics
PURPOSE: This study aims to investigate the impact of tumor quadrant location on the 5-year early-stage breast cancer survivability prediction using explainable machine learning (ML) models. By integrating these predictive models with Shapley Additiv...