AI Medical Compendium Journal:
Journal of proteome research

Showing 1 to 10 of 59 articles

To Fly, or Not to Fly, That Is the Question: A Deep Learning Model for Peptide Detectability Prediction in Mass Spectrometry.

Journal of proteome research
Identifying detectable peptides, known as flyers, is key in mass spectrometry-based proteomics. Peptide detectability is strongly related to peptide sequences and their resulting physicochemical properties. Moreover, the high variability in MS data c...

Machine Learning-Enhanced Cerebrospinal Fluid N-Glycome for the Diagnosis and Prognosis of Primary Central Nervous System Lymphoma.

Journal of proteome research
The diagnosis and prognosis of Primary Central Nervous System Lymphoma (PCNSL) present significant challenges. In this study, the potential use of machine learning algorithms in diagnosing and predicting the prognosis for PCNSL based on cerebrospinal...

Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching.

Journal of proteome research
With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search work...

NA_mCNN: Classification of Sodium Transporters in Membrane Proteins by Integrating Multi-Window Deep Learning and ProtTrans for Their Therapeutic Potential.

Journal of proteome research
Sodium transporters maintain cellular homeostasis by transporting ions, minerals, and nutrients across the membrane, and Na+/K+ ATPases facilitate the cotransport of solutes in neurons, muscle cells, and epithelial cells. Sodium transporters are impo...

SWAPS: A Modular Deep-Learning Empowered Peptide Identity Propagation Framework Beyond Match-Between-Run.

Journal of proteome research
Mass spectrometry (MS)-based proteomics relies heavily on MS/MS (MS2) data, which do not fully exploit the available MS1 information. Traditional peptide identity propagation (PIP) methods, such as match-between-runs (MBR), are limited to similar run...

PeptideForest: Semisupervised Machine Learning Integrating Multiple Search Engines for Peptide Identification.

Journal of proteome research
The first step in bottom-up proteomics is the assignment of measured fragmentation mass spectra to peptide sequences, also known as peptide spectrum matches. In recent years novel algorithms have pushed the assignment to new heights; unfortunately, d...

MAGPIE: A Machine Learning Approach to Decipher Protein-Protein Interactions in Human Plasma.

Journal of proteome research
Immunoprecipitation coupled to tandem mass spectrometry (IP-MS/MS) methods are often used to identify protein-protein interactions (PPIs). While these approaches are prone to false positive identifications through contamination and antibody nonspecif...

A Plasma Proteomics-Based Model for Identifying the Risk of Postpartum Depression Using Machine Learning.

Journal of proteome research
Postpartum depression (PPD) poses significant risks to maternal and infant health, yet proteomic analyses of PPD-risk women remain limited. This study analyzed plasma samples from 30 healthy postpartum women and 30 PPD-risk women using mass spectrome...

NovoRank: Refinement for Peptide Sequencing Based on Spectral Clustering and Deep Learning.

Journal of proteome research
peptide sequencing is a valuable technique in mass-spectrometry-based proteomics, as it deduces peptide sequences directly from tandem mass spectra without relying on sequence databases. This database-independent method, however, relies solely on im...