AIMC Journal:
Nucleic acids research

Showing 161 to 170 of 228 articles

FireProtDB: database of manually curated protein stability data.

Nucleic acids research
The majority of naturally occurring proteins have evolved to function under mild conditions inside the living organisms. One of the critical obstacles for the use of proteins in biotechnological applications is their insufficient stability at elevate...

The Dark Kinase Knowledgebase: an online compendium of knowledge and experimental results of understudied kinases.

Nucleic acids research
Kinases form the backbone of numerous cell signaling pathways, with their dysfunction similarly implicated in multiple pathologies. Further facilitated by their druggability, kinases are a major focus of therapeutic development efforts in diseases su...

SilencerDB: a comprehensive database of silencers.

Nucleic acids research
Gene regulatory elements, including promoters, enhancers, silencers, etc., control transcriptional programs in a spatiotemporal manner. Though these elements are known to be able to induce either positive or negative transcriptional control, the comm...

iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning.

Nucleic acids research
Independent component analysis (ICA) of bacterial transcriptomes has emerged as a powerful tool for obtaining co-regulated, independently-modulated gene sets (iModulons), inferring their activities across a range of conditions, and enabling their ass...

m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.

Nucleic acids research
N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the ...

DeepCLIP: predicting the effect of mutations on protein-RNA binding with deep learning.

Nucleic acids research
Nucleotide variants can cause functional changes by altering protein-RNA binding in various ways that are not easy to predict. This can affect processes such as splicing, nuclear shuttling, and stability of the transcript. Therefore, correct modeling...

mRNALoc: a novel machine-learning based in-silico tool to predict mRNA subcellular localization.

Nucleic acids research
Recent evidences suggest that the localization of mRNAs near the subcellular compartment of the translated proteins is a more robust cellular tool, which optimizes protein expression, post-transcriptionally. Retention of mRNA in the nucleus can regul...

MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization.

Nucleic acids research
MusiteDeep is an online resource providing a deep-learning framework for protein post-translational modification (PTM) site prediction and visualization. The predictor only uses protein sequences as input and no complex features are needed, which res...

Prediction of condition-specific regulatory genes using machine learning.

Nucleic acids research
Recent advances in genomic technologies have generated data on large-scale protein-DNA interactions and open chromatin regions for many eukaryotic species. How to identify condition-specific functions of transcription factors using these data has bec...