AIMC Journal:
Scientific reports

Showing 831 to 840 of 5361 articles

Early detection of feline chronic kidney disease via 3-hydroxykynurenine and machine learning.

Scientific reports
Feline chronic kidney disease (CKD) is one of the most frequently encountered diseases in veterinary practice, and the leading cause of mortality in cats over five years of age. While diagnosing advanced CKD is straightforward, current routine tests ...

Enhanced glioma tumor detection and segmentation using modified deep learning with edge fusion and frequency features.

Scientific reports
Computer-aided automatic brain tumor detection is crucial for timely diagnosis and treatment, especially in regions with limited access to medical expertise. However, existing methods often overlook edge pixel information during tumor segmentation, l...

An advanced robotic system incorporating haptic feedback for precision cardiac ablation procedures.

Scientific reports
This study introduces an innovative master-slave cardiac ablation catheter robot system that employs magnetorheological fluids. The system incorporates magnetorheological fluid to enable collision detection through haptic feedback, thereby enhancing ...

Detecting severe coronary artery stenosis in T2DM patients with NAFLD using cardiac fat radiomics-based machine learning.

Scientific reports
To analyze radiomics features of cardiac adipose tissue in individuals with type 2 diabetes (T2DM) and non-alcoholic fatty liver disease (NAFLD), integrating relevant clinical indicators, and employing machine learning techniques to construct a preci...

Urban and rural disparities in stroke prediction using machine learning among Chinese older adults.

Scientific reports
Stroke is a significant health concern in China. Differences in stroke risk between rural and urban areas have been highlighted in prior research. However, there is a scarcity of studies on urban-rural differences in predicting stroke. This study aim...

Predicting 90-day risk of urinary tract infections following urostomy in bladder cancer patients using machine learning and explainability.

Scientific reports
This research aims to design and validate a machine learning model to predict the probability of urinary tract infections within 90 days post-urostomy in bladder cancer patients. Clinical and follow-up information from 317 patients who had urostomy p...

Assessing the effectiveness of long short-term memory and artificial neural network in predicting daily ozone concentrations in Liaocheng City.

Scientific reports
Ozone pollution affects food production, human health, and the lives of individuals. Due to rapid industrialization and urbanization, Liaocheng has experienced increasing of ozone concentration over several years. Therefore, ozone has become a major ...

Development and validation of a deep reinforcement learning algorithm for auto-delineation of organs at risk in cervical cancer radiotherapy.

Scientific reports
This study was conducted to develop and validate a novel deep reinforcement learning (DRL) algorithm incorporating the segment anything model (SAM) to enhance the accuracy of automatic contouring organs at risk during radiotherapy for cervical cancer...

Machine learning for early diagnosis of Kawasaki disease in acute febrile children: retrospective cross-sectional study in China.

Scientific reports
Early diagnosis of Kawasaki disease (KD) allows timely treatment to be initiated, thereby preventing coronary artery aneurysms in children. However, it is challenging due to the subjective nature of the diagnostic criteria. This study aims to develop...

Discrimination of inherent characteristics of susceptible and resistant strains of Anopheles gambiae by explainable artificial intelligence analysis of flight trajectories.

Scientific reports
Understanding mosquito behaviours is vital for the development of insecticide-treated nets (ITNs), which have been successfully deployed in sub-Saharan Africa to reduce disease transmission, particularly malaria. However, rising insecticide resistanc...