AIMC Topic: Acute Disease

Clear Filters Showing 81 to 90 of 169 articles

Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement.

BMC medical imaging
BACKGROUND: Accurate measurement of hemorrhage volume is critical for both the prediction of prognosis and the selection of appropriate clinical treatment after spontaneous intracerebral hemorrhage (ICH). This study aimed to evaluate the performance ...

Detecting neonatal acute bilirubin encephalopathy based on T1-weighted MRI images and learning-based approaches.

BMC medical imaging
BACKGROUND: Neonatal hyperbilirubinemia is a common clinical condition that requires medical attention in newborns, which may develop into acute bilirubin encephalopathy with a significant risk of long-term neurological deficits. The current clinical...

CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre-B-cell acute lymphoblastic leukaemia.

British journal of haematology
Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identi...

Suspected Acute Pulmonary Embolism: Gestalt, Scoring Systems, and Artificial Intelligence.

Seminars in respiratory and critical care medicine
Pulmonary embolism (PE) remains a diagnostic challenge in 2021. As the pathology is potentially fatal and signs and symptoms are nonspecific, further investigations are classically required. Based on the Bayesian approach, clinical probability became...

Predictive Analytics for Care and Management of Patients With Acute Diseases: Deep Learning-Based Method to Predict Crucial Complication Phenotypes.

Journal of medical Internet research
BACKGROUND: Acute diseases present severe complications that develop rapidly, exhibit distinct phenotypes, and have profound effects on patient outcomes. Predictive analytics can enhance physicians' care and management of patients with acute diseases...

Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: Guidelines recommend risk stratification scores in patients presenting with gastrointestinal bleeding (GIB), but such scores are uncommonly employed in practice. Automation and deployment of risk stratification scores in real time...

Artificial intelligence in biliopancreatic endoscopy: Is there any role?

Best practice & research. Clinical gastroenterology
Artificial intelligence (AI) research in endoscopy is being translated at rapid pace with a number of approved devices now available for use in luminal endoscopy. However, the published literature for AI in biliopancreatic endoscopy is predominantly ...

Acute hyperglycaemia in cystic fibrosis pulmonary exacerbations.

Endocrinology, diabetes & metabolism
BACKGROUND: Hyperglycaemia may contribute to failure to recover from pulmonary exacerbations in cystic fibrosis (CF). We aimed to evaluate the prevalence and mechanism of hyperglycaemia during and post-exacerbations.

Separability of Acute Cerebral Infarction Lesions in CT Based Radiomics: Toward Artificial Intelligence-Assisted Diagnosis.

BioMed research international
This study aims at analyzing the separability of acute cerebral infarction lesions which were invisible in CT. 38 patients, who were diagnosed with acute cerebral infarction and performed both CT and MRI, and 18 patients, who had no positive finding ...