AIMC Topic: Adult

Clear Filters Showing 1981 to 1990 of 14447 articles

RAE-Net: a multi-modal neural network based on feature fusion and evidential deep learning algorithm in predicting breast cancer subtypes on DCE-MRI.

Biomedical physics & engineering express
Accurate identification of molecular subtypes in breast cancer is critical for personalized treatment. This study introduces a novel neural network model, RAE-Net, based on Multimodal Feature Fusion (MFF) and the Evidential Deep Learning Algorithm (E...

Eye-gesture control of computer systems via artificial intelligence.

F1000Research
BACKGROUND: Artificial Intelligence (AI) offers transformative potential for human-computer interaction, particularly through eye-gesture recognition, enabling intuitive control for users and accessibility for individuals with physical impairments.

Early gestational diabetes mellitus risk predictor using neural network with NearMiss.

Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology
BACKGROUND: Gestational diabetes mellitus (GDM) is globally recognized as a significant pregnancy-related condition, contributing to complex complications for both mothers and infants. Traditional glucose tolerance tests lack the ability to identify ...

Deep Learning-Enhanced Ultra-high-resolution CT Imaging for Superior Temporal Bone Visualization.

Academic radiology
RATIONALE AND OBJECTIVES: This study assesses the image quality of temporal bone ultra-high-resolution (UHR) Computed tomography (CT) scans in adults and children using hybrid iterative reconstruction (HIR) and a novel, vendor-specific deep learning-...

Generative Artificial Intelligence and Misinformation Acceptance: An Experimental Test of the Effect of Forewarning About Artificial Intelligence Hallucination.

Cyberpsychology, behavior and social networking
Generative artificial intelligence (AI) tools could create statements that are seemingly plausible but factually incorrect. This is referred to as AI hallucination, which can contribute to the generation and dissemination of misinformation. Thus, the...

Deep transfer learning radiomics for distinguishing sinonasal malignancies: a preliminary MRI study.

Future oncology (London, England)
PURPOSE: This study aimed to assess the diagnostic accuracy of combining MRI hand-crafted (HC) radiomics features with deep transfer learning (DTL) in identifying sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC), and non-Hodgki...

Deep learning to quantify the pace of brain aging in relation to neurocognitive changes.

Proceedings of the National Academy of Sciences of the United States of America
Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since bi...

Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy.

Epilepsy research
INTRODUCTION: To investigate the potential of using artificial intelligence (AI), specifically large language models (LLMs), for synthesizing information in a simulated randomized clinical trial (RCT) for an anti-seizure medication, cenobamate, demon...

Machine-learning random forest algorithms predict post-cycloplegic myopic corrections from noncycloplegic clinical data.

Optometry and vision science : official publication of the American Academy of Optometry
SIGNIFICANCE: Machine learning random forest algorithms were used to predict objective refractive outcomes after cycloplegic refraction using noncycloplegic clinical data. A classification model predicted post-cycloplegic myopia and could be useful i...

Development of a Machine Learning-Powered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data.

Journal of Korean medical science
BACKGROUND: An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize...