AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adult

Showing 191 to 200 of 12433 articles

Clear Filters

Development and Evaluation of Automated Artificial Intelligence-Based Brain Tumor Response Assessment in Patients with Glioblastoma.

AJNR. American journal of neuroradiology
This project aimed to develop and evaluate an automated, AI-based, volumetric brain tumor MRI response assessment algorithm on a large cohort of patients treated at a high-volume brain tumor center. We retrospectively analyzed data from 634 patients ...

Deep learning model for predicting the RAS oncogene status in colorectal cancer liver metastases.

Journal of cancer research and therapeutics
BACKGROUND: To develop a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CECT) to assess the rat sarcoma (RAS) oncogene status and predict targeted therapy response in colorectal cancer liver metastases (CRLM).

Feedback Attention to Enhance Unsupervised Deep Learning Image Registration in 3D Echocardiography.

IEEE transactions on medical imaging
Cardiac motion estimation is important for assessing the contractile health of the heart, and performing this in 3D can provide advantages due to the complex 3D geometry and motions of the heart. Deep learning image registration (DLIR) is a robust wa...

High-Resolution Maps of Left Atrial Displacements and Strains Estimated With 3D Cine MRI Using Online Learning Neural Networks.

IEEE transactions on medical imaging
The functional analysis of the left atrium (LA) is important for evaluating cardiac health and understanding diseases like atrial fibrillation. Cine MRI is ideally placed for the detailed 3D characterization of LA motion and deformation but is lackin...

Artificial intelligence model for the assessment of unstained live sperm morphology.

Reproduction & fertility
ABSTRACT: Traditional sperm morphology assessment requires staining and high magnification (100×), rendering sperm unsuitable for further use. We aimed to determine whether an in-house artificial intelligence (AI) model could reliably assess normal s...

Predicting Agitation Events in the Emergency Department Through Artificial Intelligence.

JAMA network open
IMPORTANCE: Agitation events are increasing in emergency departments (EDs), exacerbating safety risks for patients and clinicians. A wide range of clinical etiologies and behavioral patterns in the emergency setting make agitation prediction difficul...

Evaluation of an Ambient Artificial Intelligence Documentation Platform for Clinicians.

JAMA network open
IMPORTANCE: The increase of electronic health record (EHR) work negatively impacts clinician well-being. One potential solution is incorporating an ambient artificial intelligence (AI) documentation platform.

Enhancing F-FDG PET image quality and lesion diagnostic performance across different body mass index using the deep progressive learning reconstruction algorithm.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: As body mass index (BMI) increases, the quality of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (F-FDG) positron emission tomography (PET) images reconstructed with ordered subset expectation maximization (OSEM) declines, negatively impacting ...

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC medical imaging
BACKGROUND: The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-con...

Identification of relevant features using SEQENS to improve supervised machine learning models predicting AML treatment outcome.

BMC medical informatics and decision making
BACKGROUND AND OBJECTIVE: This study has two main objectives. First, to evaluate a feature selection methodology based on SEQENS, an algorithm for identifying relevant variables. Second, to validate machine learning models that predict the risk of co...