PURPOSE: The aim of our study was to assess the diagnostic performance of commercially available AI software for intracranial aneurysm detection and to determine if the AI system enhances the radiologist's accuracy in identifying aneurysms and reduce...
AJR. American journal of roentgenology
Sep 4, 2024
Retrospective studies evaluating artificial intelligence (AI) algorithms for intracranial hemorrhage (ICH) detection on noncontrast CT (NCCT) have shown promising results but lack prospective validation. The purpose of this article was to evaluate ...
BACKGROUND: Persistent opioid use is a common occurrence after surgery and prolonged exposure to opioids may result in escalation and dependence. The objective of this study was to develop machine-learning-based predictive models for persistent opioi...
High-energy impacts, like vehicle crashes or falls, can lead to pelvic ring injuries. Rapid diagnosis and treatment are crucial due to the risks of severe bleeding and organ damage. Pelvic radiography promptly assesses fracture extent and location, b...
The effectiveness of ultrasonography (USG) in liver cancer screening is partly constrained by the operator's expertise. We aimed to develop and evaluate an AI-assisted system for detecting and classifying focal liver lesions (FLLs) from USG images. T...
BACKGROUND: Sepsis is a heterogeneous syndrome, and enrollment of more homogeneous patients is essential to improve the efficiency of clinical trials. Artificial intelligence (AI) has facilitated the identification of homogeneous subgroups, but how t...
BACKGROUND: Breast cancer is a leading global health concern, necessitating advancements in recurrence prediction and management. The development of an artificial intelligence (AI)-based clinical decision support system (AI-CDSS) using ChatGPT addres...
Journal of orthopaedic surgery and research
Sep 4, 2024
BACKGROUND: Machine learning (ML) is extensively employed for forecasting the outcome of various illnesses. The objective of the study was to develop ML based classifiers using a stacking ensemble strategy to predict the Japanese Orthopedic Associati...
INTRODUCTION: The aim of this study was to compare various machine learning algorithms for constructing a diabetic retinopathy (DR) prediction model among type 2 diabetes mellitus (DM) patients and to develop a nomogram based on the best model.
BACKGROUND: Mechanical ventilation (MV) is vital for critically ill ICU patients but carries significant mortality risks. This study aims to develop a predictive model to estimate hospital mortality among MV patients, utilizing comprehensive health d...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.