Longitudinal imaging biomarkers are invaluable for understanding the course of neurodegeneration, promising the ability to track disease progression and to detect disease earlier than cross-sectional biomarkers. To properly realize their potential, b...
BACKGROUND: Hippocampus is one of the first structures affected by neurodegenerative diseases such as Alzheimer's disease (AD) and mild cognitive impairment (MCI). Hippocampal atrophy can be evaluated in terms of hippocampal volumes and shapes using ...
Computer-aided diagnosis has become a widely-used auxiliary tool for the diagnosis of Alzheimer's disease (AD). In this study, we developed an extreme learning machine (ELM) model to discriminate between patients with AD and normal controls (NCs) usi...
A virtual screening protocol based on machine learning models was used to identify mimetics of the natural product (-)-galantamine. This fully automated approach identified eight compounds with bioactivities on at least one of the macromolecular targ...
Neuropathologists assess vast brain areas to identify diverse and subtly-differentiated morphologies. Standard semi-quantitative scoring approaches, however, are coarse-grained and lack precise neuroanatomic localization. We report a proof-of-concept...
Magnetic resonance imaging (MRI) volumetric measures have become a standard tool for the detection of incipient Alzheimer's Disease (AD) dementia in mild cognitive impairment (MCI). Focused on providing an earlier and more accurate diagnosis, sophist...
(OC)-a traditional Chinese medicine (TCM)-has been reported to have large numbers of flavonoids, alkaloids, and triterpenoids. The previous studies on OC for treating Alzheimer's disease (AD) only focused on single targets and its mechanisms, while ...
BACKGROUND: Recent deep learning models have shown remarkable accuracy for the diagnostic classification. However, they have limitations in clinical application due to the gap between the training cohorts and real-world data. We aimed to develop a mo...
International journal of environmental research and public health
Apr 11, 2019
The aim of this study was to demonstrate the usefulness of artificial neural networks in Alzheimer disease diagnosis (AD) using data of brain single photon emission computed tomography (SPECT). The results were compared with discriminant analysis. Th...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.