BACKGROUND: Breast cancer (BC) is caused by the uncontrolled proliferation of breast epithelial cells followed by malignant transformation, and it has the highest incidence among female malignant tumors. The metastasis of BC occurs through direct and...
BACKGROUNDS: To develop a machine learning (ML) model for predicting the prognosis of breast cancer (BC) patients with low human epidermal growth factor receptor 2 (HER2) expression, and to investigate the association between clinicopathological char...
Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learn...
BACKGROUND: There are documented differences in Breast cancer (BrCA) presentations and outcomes between Black and White patients. In addition to molecular factors, socioeconomic, racial, and clinical factors result in disparities in outcomes for wome...
Hepatocellular carcinoma (HCC) represents a significant health burden in Egypt, largely attributable to the endemic prevalence of hepatitis B and C viruses. Early identification of HCC remains a challenge due to the lack of widespread screening among...
BACKGROUND: Lung adenocarcinoma (LUAD) is a heterogeneous tumor characterized by diverse genetic and molecular alterations. Developing a multi-omics-based classification system for LUAD is urgently needed to advance biological understanding.
BACKGROUND: Breast cancer prognosis remains a significant challenge due to the disease's molecular heterogeneity and complexity. Accurate predictive models are critical for improving patient outcomes and tailoring personalized therapies.
The Thoracic and cardiovascular surgeon
Nov 26, 2024
BACKGROUND: Lung cancer is the most prevalent and lethal cancer globally, necessitating accurate differentiation between benign and malignant pulmonary nodules to guide treatment decisions. This study aims to develop a predictive model that integrat...
This study explores the integration of Raman spectroscopy (RS) with machine learning for the early detection and subtyping of breast cancer using blood plasma samples. We performed detailed spectral analyses, identifying significant spectral patterns...
The Explainable Modular Neural Network (XModNN) enables the identification of biomarkers, facilitating the classification of diseases and clinical parameters in transcriptomic datasets. The modules within XModNN represent specific pathways or genes o...