AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 221 to 230 of 980 articles

Clear Filters

Prediction model for ocular metastasis of breast cancer: machine learning model development and interpretation study.

BMC cancer
BACKGROUND: Breast cancer (BC) is caused by the uncontrolled proliferation of breast epithelial cells followed by malignant transformation, and it has the highest incidence among female malignant tumors. The metastasis of BC occurs through direct and...

Prognostic prediction for HER2-low breast cancer patients using a novel machine learning model.

BMC cancer
BACKGROUNDS: To develop a machine learning (ML) model for predicting the prognosis of breast cancer (BC) patients with low human epidermal growth factor receptor 2 (HER2) expression, and to investigate the association between clinicopathological char...

Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning.

Nature communications
Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learn...

Clinical and Multiomic Features Differentiate Young Black and White Breast Cancer Cohorts Derived by Machine Learning Approaches.

Clinical breast cancer
BACKGROUND: There are documented differences in Breast cancer (BrCA) presentations and outcomes between Black and White patients. In addition to molecular factors, socioeconomic, racial, and clinical factors result in disparities in outcomes for wome...

Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques.

Scientific reports
Hepatocellular carcinoma (HCC) represents a significant health burden in Egypt, largely attributable to the endemic prevalence of hepatitis B and C viruses. Early identification of HCC remains a challenge due to the lack of widespread screening among...

Multi-omics characterization and machine learning of lung adenocarcinoma molecular subtypes to guide precise chemotherapy and immunotherapy.

Frontiers in immunology
BACKGROUND: Lung adenocarcinoma (LUAD) is a heterogeneous tumor characterized by diverse genetic and molecular alterations. Developing a multi-omics-based classification system for LUAD is urgently needed to advance biological understanding.

Evaluating the prognostic potential of telomerase signature in breast cancer through advanced machine learning model.

Frontiers in immunology
BACKGROUND: Breast cancer prognosis remains a significant challenge due to the disease's molecular heterogeneity and complexity. Accurate predictive models are critical for improving patient outcomes and tailoring personalized therapies.

A Predictive Model Integrating AI Recognition Technology and Biomarkers for Lung Nodule Assessment.

The Thoracic and cardiovascular surgeon
BACKGROUND:  Lung cancer is the most prevalent and lethal cancer globally, necessitating accurate differentiation between benign and malignant pulmonary nodules to guide treatment decisions. This study aims to develop a predictive model that integrat...

Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics.

Journal of biophotonics
This study explores the integration of Raman spectroscopy (RS) with machine learning for the early detection and subtyping of breast cancer using blood plasma samples. We performed detailed spectral analyses, identifying significant spectral patterns...

XModNN: Explainable Modular Neural Network to Identify Clinical Parameters and Disease Biomarkers in Transcriptomic Datasets.

Biomolecules
The Explainable Modular Neural Network (XModNN) enables the identification of biomarkers, facilitating the classification of diseases and clinical parameters in transcriptomic datasets. The modules within XModNN represent specific pathways or genes o...