AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cause of Death

Showing 1 to 10 of 74 articles

Clear Filters

Machine learning based association between inflammation indicators (NLR, PLR, NPAR, SII, SIRI, and AISI) and all-cause mortality in arthritis patients with hypertension: NHANES 1999-2018.

Frontiers in public health
BACKGROUND: This study aimed to evaluate the relationship between CBC-derived inflammatory markers (NLR, PLR, NPAR, SII, SIRI, and AISI) and all-cause mortality (ACM) risk in arthritis (AR) patients with hypertensive (HTN) using data from the NHANES.

The association of lifestyle with cardiovascular and all-cause mortality based on machine learning: a prospective study from the NHANES.

BMC public health
BACKGROUND: Lifestyle and cardiovascular mortality and all-cause mortality have been exhaustively explored by traditional methods, but the advantages of machine learning (ML) over traditional methods may lead to different or more precise conclusions....

Machine-learning versus traditional methods for prediction of all-cause mortality after transcatheter aortic valve implantation: a systematic review and meta-analysis.

Open heart
BACKGROUND: Accurate mortality prediction following transcatheter aortic valve implantation (TAVI) is essential for mitigating risk, shared decision-making and periprocedural planning. Surgical risk models have demonstrated modest discriminative valu...

Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine learning methods.

Scientific reports
The present study analyzed the impact of age on the causes of death (CODs) in patients with nasopharyngeal carcinoma (NPC) undergoing chemoradiotherapy (CRT) using machine learning approaches. A total of 2841 patients (1037 classified as older, ≥ 60 ...

Application of machine learning algorithms in an epidemiologic study of mortality.

Annals of epidemiology
PURPOSE: Epidemiologic studies are important in assessing risk factors of mortality. Machine learning (ML) is efficient in analyzing multidimensional data to unravel dependencies between risk factors and health outcomes.

Machine learning for predicting all-cause mortality of metabolic dysfunction-associated fatty liver disease: a longitudinal study based on NHANES.

BMC gastroenterology
BACKGROUND: The mortality burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is rising, making it crucial to predict mortality and identify the factors influencing it. While advanced machine learning algorithms are gaining recogni...