AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cognitive Dysfunction

Showing 101 to 110 of 499 articles

Clear Filters

Identification of profiles associated with conversions between the Alzheimer's disease stages, using a machine learning approach.

Alzheimer's research & therapy
BACKGROUND: The identification of factors involved in the conversion across the different Alzheimer's disease (AD) stages is crucial to prevent or slow the disease progression. We aimed to assess the factors and their combination associated with the ...

Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury.

NeuroImage
BACKGROUND: Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy...

Enhancing identification performance of cognitive impairment high-risk based on a semi-supervised learning method.

Journal of biomedical informatics
BACKGROUND: Cognitive assessment plays a pivotal role in the early detection of cognitive impairment, particularly in the prevention and management of cognitive diseases such as Alzheimer's and Lewy body dementia. Large-scale screening relies heavily...

Machine learning for predicting cognitive decline within five years in Parkinson's disease: Comparing cognitive assessment scales with DAT SPECT and clinical biomarkers.

PloS one
OBJECTIVE: Parkinson's disease (PD) is an age-related neurodegenerative condition characterized mostly by motor symptoms. Although a wide range of non-motor symptoms (NMS) are frequently experienced by PD patients. One of the important and common NMS...

AI-based differential diagnosis of dementia etiologies on multimodal data.

Nature medicine
Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an artificial intelligence (AI) model that har...

Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI.

NeuroImage
BACKGROUND: The prediction of Alzheimer's disease (AD) progression from its early stages is a research priority. In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years. However, existing investi...

Prediction of Alzheimer's disease progression within 6 years using speech: A novel approach leveraging language models.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Identification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials.

Siamese Graph Convolutional Network quantifies increasing structure-function discrepancy over the cognitive decline continuum.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Alzheimer's disease dementia (ADD) is well known to induce alterations in both structural and functional brain connectivity. However, reported changes in connectivity are mostly limited to global/local network features, whic...

A deep learning model for generating [F]FDG PET Images from early-phase [F]Florbetapir and [F]Flutemetamol PET images.

European journal of nuclear medicine and molecular imaging
INTRODUCTION: Amyloid-β (Aβ) plaques is a significant hallmark of Alzheimer's disease (AD), detectable via amyloid-PET imaging. The Fluorine-18-Fluorodeoxyglucose ([F]FDG) PET scan tracks cerebral glucose metabolism, correlated with synaptic dysfunct...

A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease.

Scientific reports
Alzheimer's disease (AD) accounts for 60-70% of the population with dementia. Mild cognitive impairment (MCI) is a diagnostic entity defined as an intermediate stage between subjective cognitive decline and dementia, and about 10-15% of people annual...