AIMC Topic: Colonic Neoplasms

Clear Filters Showing 31 to 40 of 191 articles

Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis.

IEEE transactions on neural networks and learning systems
Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose ...

Metaheuristic integrated machine learning classification of colon cancer using STFT LASSO and EHO feature extraction from microarray gene expressions.

Scientific reports
The microarray gene expression data poses a tremendous challenge due to their curse of dimensionality problem. The sheer volume of features far surpasses available samples, leading to overfitting and reduced classification accuracy. Thus the dimensio...

An artificial intelligence-designed predictive calculator of conversion from minimally invasive to open colectomy in colon cancer.

Updates in surgery
Minimally invasive surgery is safe and effective in colorectal cancer. Conversion to open surgery may be associated with adverse effects on treatment outcomes. This study aimed to assess risk factors of conversion from minimally invasive to open cole...

Evaluating the prognostic value of tumor deposits in non-metastatic lymph node-positive colon adenocarcinoma using Cox regression and machine learning.

International journal of colorectal disease
BACKGROUND: The 8th AJCC TNM staging for non-metastatic lymph node-positive colon adenocarcinoma patients(NMLP-CA) stages solely by lymph node status, irrespective of the positivity of tumor deposits (TD). This study uses machine learning and Cox reg...

Machine learning evaluation of immune infiltrate through digital tumour score allows prediction of survival outcome in a pooled analysis of three international stage III colon cancer cohorts.

EBioMedicine
BACKGROUND: T-cell immune infiltrates are robust prognostic variables in localised colon cancer. Evaluation of prognosis using artificial intelligence is an emerging field. We evaluated whether machine learning analysis improved prediction of patient...

Application of machine-learning model to optimize colonic adenoma detection in India.

Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology
AIMS: There is limited data on the prevalence and risk factors of colonic adenoma from the Indian sub-continent. We aimed at developing a machine-learning model to optimize colonic adenoma detection in a prospective cohort.

Comparison of deep learning models to traditional Cox regression in predicting survival of colon cancer: Based on the SEER database.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: In this study, a deep learning algorithm was used to predict the survival rate of colon cancer (CC) patients, and compared its performance with traditional Cox regression.

Machine learning for predicting colon cancer recurrence.

Surgical oncology
INTRODUCTION: Colorectal cancer (CRC) is a global public health concern, ranking among the most commonly diagnosed malignancies worldwide. Despite advancements in treatment modalities, the specter of CRC recurrence remains a significant challenge, de...

Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer.

Journal of clinical oncology : official journal of the American Society of Clinical Oncology
PURPOSE: A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients ...

Impact of study design on adenoma detection in the evaluation of artificial intelligence-aided colonoscopy: a systematic review and meta-analysis.

Gastrointestinal endoscopy
BACKGROUND AND AIMS: Randomized controlled trials (RCTs) have reported that artificial intelligence (AI) improves endoscopic polyp detection. Different methodologies-namely, parallel and tandem designs-have been used to evaluate the efficacy of AI-as...