OBJECTIVES: This study investigated the impact of machine learning (ML)-based fractional flow reserve derived from computed tomography (FFR) compared to invasive coronary angiography (ICA) for therapeutic decision-making and patient outcome in patien...
PURPOSE: Little is known about the characteristics and impact of acute pulmonary embolism (PE) during episodes of asthma exacerbation. We aimed to characterize patients diagnosed with acute PE in the setting of asthma exacerbation, develop a predicti...
OBJECTIVES: To build models based on conventional logistic regression (LR) and machine learning (ML) algorithms combining clinical, morphological, and hemodynamic information to predict individual rupture status of unruptured intracranial aneurysms (...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Apr 27, 2020
We propose a fully automated algorithm based on a deep learning framework enabling screening of a coronary computed tomography angiography (CCTA) examination for confident detection of the presence or absence of coronary artery atherosclerosis. The s...
PURPOSE: Ischemic lesion volume (ILV) is an important radiological predictor of functional outcome in patients with anterior circulation stroke. Our aim was to assess the agreement between automated ILV measurements on NCCT using the Brainomix softwa...
OBJECTIVE: To investigate the diagnostic performance of deep learning (DL)-based vascular extraction and stenosis detection technology in assessing coronary artery disease (CAD).
OBJECTIVE: To determine the potential impact of on-site CT-derived fractional flow reserve (CT-FFR) on the diagnostic efficiency and effectiveness of coronary CT angiography (CCTA) in patients with obstructive coronary artery disease (CAD) on CCTA.
PURPOSE: Segmentation of left ventricular myocardium (LVM) in coronary computed tomography angiography (CCTA) is important for diagnosis of cardiovascular diseases. Due to poor image contrast and large variation in intensity and shapes, LVM segmentat...