AIMC Topic: Contrast Media

Clear Filters Showing 121 to 130 of 565 articles

Prediction of CD8+T lymphocyte infiltration levels in gastric cancer from contrast-enhanced CT and clinical factors using machine learning.

Medical physics
BACKGROUND: CD8+ T lymphocyte infiltration is closely associated with the prognosis and immunotherapy response of gastric cancer (GC). For now, the examination of CD8 infiltration levels relies on endoscopic biopsy, which is invasive and unsuitable f...

A Shape-Consistent Deep-Learning Segmentation Architecture for Low-Quality and High-Interference Myocardial Contrast Echocardiography.

Ultrasound in medicine & biology
OBJECTIVE: Myocardial contrast echocardiography (MCE) plays a crucial role in diagnosing ischemia, infarction, masses and other cardiac conditions. In the realm of MCE image analysis, accurate and consistent myocardial segmentation results are essent...

Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data.

Breast (Edinburgh, Scotland)
PURPOSE: In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise meth...

DCE-Qnet: deep network quantification of dynamic contrast enhanced (DCE) MRI.

Magma (New York, N.Y.)
INTRODUCTION: Quantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption.

Automated segmentation and deep learning classification of ductopenic parotid salivary glands in sialo cone-beam CT images.

International journal of computer assisted radiology and surgery
PURPOSE: This study addressed the challenge of detecting and classifying the severity of ductopenia in parotid glands, a structural abnormality characterized by a reduced number of salivary ducts, previously shown to be associated with salivary gland...

Clinical feasibility of deep learning based synthetic contrast enhanced abdominal CT in patients undergoing non enhanced CT scans.

Scientific reports
Our objective was to develop and evaluate the clinical feasibility of deep-learning-based synthetic contrast-enhanced computed tomography (DL-SynCCT) in patients designated for nonenhanced CT (NECT). We proposed a weakly supervised learning with the ...

Artificial T1-Weighted Postcontrast Brain MRI: A Deep Learning Method for Contrast Signal Extraction.

Investigative radiology
OBJECTIVES: Reducing gadolinium-based contrast agents to lower costs, the environmental impact of gadolinium-containing wastewater, and patient exposure is still an unresolved issue. Published methods have never been compared. The purpose of this stu...

Deep learning model based on contrast-enhanced ultrasound for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma.

European radiology
OBJECTIVES: To establish and validate a non-invasive deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict vessels encapsulating tumor clusters (VETC) patterns in hepatocellular carcinoma (HCC).

Deep learning-based material decomposition of iodine and calcium in mobile photon counting detector CT.

PloS one
Photon-counting detector (PCD)-based computed tomography (CT) offers several advantages over conventional energy-integrating detector-based CT. Among them, the ability to discriminate energy exhibits significant potential for clinical applications be...