AIMC Topic: Critical Illness

Clear Filters Showing 41 to 50 of 198 articles

Developing a prediction model for cognitive impairment in older adults following critical illness.

BMC geriatrics
BACKGROUND: New or worsening cognitive impairment or dementia is common in older adults following an episode of critical illness, and screening post-discharge is recommended for those at increased risk. There is a need for prediction models of post-I...

Impact of nutrition-related laboratory tests on mortality of patients who are critically ill using artificial intelligence: A focus on trace elements, vitamins, and cholesterol.

Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition
BACKGROUND: This study aimed to understand the collective impact of trace elements, vitamins, cholesterol, and prealbumin on patient outcomes in the intensive care unit (ICU) using an advanced artificial intelligence (AI) model for mortality predicti...

Prognosis of major bleeding based on residual variables and machine learning for critical patients with upper gastrointestinal bleeding: A multicenter study.

Journal of critical care
BACKGROUND: Upper gastrointestinal bleeding (UGIB) is a significant cause of morbidity and mortality worldwide. This study investigates the use of residual variables and machine learning (ML) models for predicting major bleeding in patients with seve...

From bytes to bedside: a systematic review on the use and readiness of artificial intelligence in the neonatal and pediatric intensive care unit.

Intensive care medicine
PURPOSE: Despite its promise to enhance patient outcomes and support clinical decision making, clinical use of artificial intelligence (AI) models at the bedside remains limited. Translation of advancements in AI research into tangible clinical benef...

A machine learning-based prediction of hospital mortality in mechanically ventilated ICU patients.

PloS one
BACKGROUND: Mechanical ventilation (MV) is vital for critically ill ICU patients but carries significant mortality risks. This study aims to develop a predictive model to estimate hospital mortality among MV patients, utilizing comprehensive health d...

Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.

Annals of medicine
BACKGROUND: To construct and evaluate a predictive model for in-hospital mortality among critically ill patients with acute kidney injury (AKI) undergoing continuous renal replacement therapy (CRRT), based on nine machine learning (ML) algorithm.

Unraveling the impact of therapeutic drug monitoring via machine learning for patients with sepsis.

Cell reports. Medicine
Clinical studies investigating the benefits of beta-lactam therapeutic drug monitoring (TDM) among critically ill patients are hindered by small patient groups, variability between studies, patient heterogeneity, and inadequate use of TDM. Accordingl...

Spectrochemical and explainable artificial intelligence approaches for molecular level identification of the status of critically ill patients with COVID-19.

Talanta
This study explores the molecular alterations and disease progression in COVID-19 patients using ATR-FTIR spectroscopy combined with spectrochemical and explainable artificial intelligence (XAI) approaches. Blood serum samples from intubated patients...